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1 A brief review of the diatomic rigid rotor

Consider a diatomic molecule with atoms of mass m1 and m2 and bond length r, spinning about
their center of mass (COM). The center of mass is defined as the location where m1r1 = m2r2
where r1,2 is the distance of m1,2 from the COM. Within the rigid rotor approximation, the bond
length r is fixed.

This system has:

� angular frequency ω in rad/s, analogous to linear velocity

� reduced mass µ = m1m2
m1+m2

� moment of inertia I = µr2, which describes how difficult it is to start the rotor spinning, the
angular motion analog of mass

� angular momentum L = Iω, analogous to linear momentum (p = mv)

� kinetic energy KE = L2/2I, analogous to KE = p2/2m for linear systems

If any of these quantities are unfamiliar, McQuarrie’s “Quantum Chemistry” is a good reference.
Next, we write down the time-independent Schrödinger equation for this system and consider

the energy eigenstates and eigenvalues. For a free rigid rotor, we have V (x, y, z) = 0 and the
Hamiltonian consists solely of the kinetic energy term. We can conceive of this system as a free
particle constrained to explore the surface of a sphere. In three dimensions:

Ĥ = − ℏ2

2µ

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
+�����V (x, y, z) ≡ − ℏ2

2µ
∇2 (1)
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where ∇2 is the Laplacian operator.
Because our “particle” (of effective reduced mass µ) is constrained to explore a rigid spherical

surface of distance r from the origin, it is much simpler to solve the Schrödinger equation and
express wavefunctions in terms of spherical coordinates (r, θ, ϕ) rather than Cartesian coordinates
(x, y, z).

The coordinate transformation we would have to use here is:

r =
√
x2 + y2 + z2 (2)

θ = arccos
(z
r

)
(3)

ϕ = arctan
(y
x

)
(4)

We will not derive the Laplacian operator in terms of spherical coordinates here, but it can be
written as:

∇2 =
1

r2
∂

∂r

[
r2
∂

∂r

]
+

1

r2
1

sin θ

∂

∂θ

[
sin θ

∂

∂θ

]
+

1

r2
1

sin2 θ

∂2

∂ϕ2
(5)

For our rigid rotor, r is fixed, so we can treat it as a constant and the derivatives with respect to
it disappear. We can therefore write the Hamiltonian as:

Ĥ = −ℏ2

2I

[
1

sin θ

∂

∂θ

[
sin θ

∂

∂θ

]
+

1

sin2 θ

∂2

∂ϕ2

]
=
L̂2

2I
(6)

where we also have noted that K̂E = L̂2

2I .
The rigid rotor solutions are found using the Hamiltonian in Eqn. 6 and solving:

Ĥψ(θ, ϕ) = Eψ(θ, ϕ) (7)

where the wavefunction ψ(θ, ϕ) represents the probability distribution for the orientation of our
rotor at any given moment in time. We won’t derive the solutions to this Hamiltonian here, but the
math is not too difficult. It is done out in McQuarrie Ch. 6 (see Sections 6.1 and 6.6 in particular).

The rigid rotor eigenfunctions are called spherical harmonics. They factor neatly into func-
tions of θ and ϕ and are labeled with two quantum number indices J and m. By convention the
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wavefunctions are referred to as Y m
J (θ, ϕ). They take the following form:

ψ(θ, ϕ) ≡ Y m
J (θ, ϕ) = Θ(θ)Φ(ϕ) (8)

Φ(ϕ) =
1

(2π)1/2
· eimϕ (9)

Θ(θ) =

[(
2J + 1

2

)(
(J − |m|)!
(J + |m|)!

)]1/2
· P |m|J (cos θ) (10)

J = {0, 1, 2, . . . } (11)

m = {0± 1,±2 · · · ± J} (12)

and where P
|m|
J (cos θ) are Legendre polynomials, expressed as functions of cos θ. The Legendre

polynomials are an orthogonal set of polynomial functions that are solutions to a differential equa-

tion that falls out of the rigid rotor Hamiltonian. The first few Legendre polynomials P
|m|
J (x)

are:

P 0
0 (x) = 1 (13)

P 0
1 (x) = x (14)

P 1
1 (x) = (1− x2)1/2 (15)

P 0
2 (x) =

1

2
(3x2 − 1) (16)

. . .

And therefore, just to be explicit about it, the functional forms of the first few rigid rotor eigen-
functions {Y m

J (θ, ϕ)} are:

Y 0
0 =

1

(4π)1/2
(17)

Y 0
1 =

(
3

4π

)1/2

cos θ (18)

Y 1
1 = −

(
3

8π

)1/2

sin θ · eiϕ (19)

Y −11 =

(
3

8π

)1/2

sin θe−iϕ (20)

Y 0
2 =

(
5

16π

)1/2

(3 cos2 θ − 1) (21)

Y 1
2 = −

(
15

8π

)1/2

sin θ cos θeiϕ (22)

. . .

These functions are normalized and together form a complete orthonormal basis set. They are
plotted below.

A few things to note:
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� J represents the total number of nodes present in a given wavefunction, while m captures the
alignment of the nodes relative to the Cartesian axes of the laboratory.

� Green regions represent locations where the wavefunction has positive amplitude; red regions
represent negative amplitude.

� The small spherical graphics give the actual map of how the rigid rotor is expected to be
oriented in θ and ϕ. The lobed graphics give a better picture of where the angular nodes are.
A particle in a given eigenstate will never be found pointing towards a node.

� Notice how the Y 0
0 eigenstate (which turns out to be the ground state) shows a uniform

probability distribution on the surface of the sphere. This indicates that a rotor in state Y 0
0

is equally likely to be found pointing in any direction, since the expression for Y 0
0 given above

is independent of θ and ϕ.

The spherical harmonic eigenfunctions have relatively complex forms, but they have many nice
properties. The expression for their energy eigenvalues is very simple and depends only on J :

ĤY m
J (θ, ϕ) = EJY

m
J (θ, ϕ) (23)

EJ =
ℏ2

2I
J(J + 1) ≡ BJ(J + 1) (24)

where B = ℏ2
2I is defined as the rotational constant for a given system (given here in Joules).

Since the eigenenergies depend only on J , all the levels with a given J quantum number but
different m have the same energy. For a given J , there are 2J + 1 states with different m =
−J,−J + 1, . . . J − 1, J . The J th energy level therefore has a degeneracy of 2J + 1.

The allowed angular momenta of this system are quantized as well.

L̂2 Y m
J (θ, ϕ) = ℏ2J(J + 1)Y m

J (θ, ϕ), J = 0, 1, 2, · · · (25)

L̂z Y
m
J (θ, ϕ) = mℏY m

J (θ, ϕ) (26)
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where L̂2 is the square of the total angular momentum and L̂z is z-component of the angular
momentum, e.g. its projection on the laboratory z axis.

2 The microwave spectrum and selection rules

Recall our expression for the absorption lineshape, which describes the spectrum of allowed tran-
sitions and their relative strengths:

σ(ω) =
1

2π

∫ ∞
−∞

dt e−iωt
∑
i

pi⟨i|µ · ξ · µ(t) · ξ|i⟩ (27)

=
1

2π

∫ ∞
−∞

dt e−iωt
∑
i

pi⟨i|µ · ξ · e+iĤt/ℏ · µ · ξ · e−Ĥt/ℏ|i⟩ (28)

To apply this expression to the rigid rotor, let’s first note that for a linearly polarized electric field
along the z axis, ξ is just the unit vector ẑ. Therefore:

µ · ξ = µ · ẑ = µ0 cos θ (29)

where within spherical coordinates θ is the angle between the axis of our rigid rotor and the z axis,
and |µ0| is the magnitude of the permanent dipole.
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Re-expressing Eqn. 28 for the case of the rigid rotor, we have:

σ(ω) =
1

2π

∫ ∞
−∞

dt e−iωt
∑
J,m

pJ,m⟨Y m
J |µ0 cos θ · e+iĤrott/ℏ · µ0 cos θ · e−Ĥrott/ℏ|Y m

J ⟩ (30)

=
1

2π

∫ ∞
−∞

dt e−iωt
∑
J,m

pJ,m|µ0|2⟨Y m
J | cos θ · e+iĤrott/ℏ · cos θ · e−Ĥrott/ℏ|Y m

J ⟩ (31)

Some useful properties of spherical harmonic wavefunctions that we will use to evaluate this ex-
pression are:

Ĥrot|Y m
J ⟩ = BJ(J + 1)|Y m

J ⟩ (32)

⟨Y m′
J ′ |Y m

J ⟩ = δJ,J ′δm,m′ (33)

cos θ|Y m
J ⟩ = cJ+|Y m

J+1⟩+ cJ−|Y m
J−1⟩ (34)

The last expression derives from the unique properties of Legendre polynomials. cJ+ and cJ− are
effectively Clebsch-Gordon coefficients, but we will hand-wave them away here, since they are not
essential to the major features of the rotational spectrum we will derive.

Forging ahead, let’s start by evaluating the quantity

⟨Y m
J | cos θ · e+iĤrott/ℏ · cos θ · e−iĤrott/ℏ|Y m

J ⟩ (35)

=⟨Y m
J | cos θ · e+iĤrott/ℏ · cos θ |Y m

J ⟩e−iBJ(J+1)t/ℏ (36)

=

[
c∗J+⟨Y m

J+1|+ c∗J−⟨Y m
J−1|

]
e+iĤrott/ℏ

[
cJ+|Y m

J+1⟩+ cJ−|Y m
J−1⟩

]
e−iBJ(J+1)t/ℏ (37)

=

[
c∗J+⟨Y m

J+1|+ c∗J−⟨Y m
J−1|

][
cJ+|Y m

J+1⟩e+iB(J+1)(J+2)t/ℏ + cJ−|Y m
J−1⟩e−iB(J−1)Jt/ℏ

]
e−iBJ(J+1)t/ℏ

(38)

=

[
|cJ+|2e+iB(J+1)(J+2)t/ℏ + |cJ−|2e+iB(J−1)Jt/ℏ

]
e−iBJ(J+1)t/ℏ (39)

=|cJ+|2e+2iB(J+1)t/ℏ + |cJ−|2e−2iBJt/ℏ (40)

Now, moving back to the full lineshape expression:

σ(ω) =
1

2π

∫ ∞
−∞

dt e−iωt
∑
J,m

pJ,m|µ0|2
[
|cJ+|2e+2iB(J+1)t/ℏ + |cJ−|2e−2iBJt/ℏ

]
(41)

Ignoring the m-dependence of the cJ± coefficients – this is an approximation, but not a dire one
– we can consider just the sum over J states. Assuming a thermal Boltzmann distribution with
β = 1/kBT and rotational partition function Qrot, the probability that a molecule is found with
rotational angular momentum quantum number of J is given by:

pJ =
(2J + 1)e−βEJ

Qrot
(42)
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where we use the fact that each J level has degeneracy (2J +1) due to its m sub-levels. Therefore:

σ(ω) =
1

2π
|µ0|2

∫ ∞
−∞

dt e−iωt
∑
J

(2J + 1)e−βEJ

Qrot

[
|cJ+|2e+2iB(J+1)t/ℏ + |cJ−|2e−2iBJt/ℏ

]
(43)

=
1

2π

|µ0|2

Qrot

∑
J

(2J + 1)e−βEJ

∫ ∞
−∞

dt
[
|cJ+|2e+2iB(J+1)t/ℏ−iωt + |cJ−|2e−2iBJt/ℏ−iωt

]
(44)

And finally, recalling that the Fourier transform of a complex sinusoid is a delta function centered
at the carrier frequency:

σ(ω) ∼ 1

2π

|µ0|2

Qrot

∑
J

(2J + 1)e−βEJ

[
δ(ℏω − 2B(J + 1)) + δ(ℏω + 2BJ)

]
(45)

Eqn. 45 encodes essentially everything we need to know about rotational spectroscopy of diatomic
molecules within the rigid rotor approximation! The absorption and emission spectra consist of
series of evenly spaced lines – ℏω = 2B(J + 1) in the absorption spectrum and ℏω = 2BJ in the
emission spectrum – reflecting transitions between neighboring pairs of J states for J = 0, 1, 2 . . .
The relative intensities of lines reflect the Boltzmann population in the initial J state.

(46)

We talk about rotational transitions giving rise to a microwave spectrum because the transition
energies spaced by 2B typically fall at microwave frequencies (100s of MHz to 100s of GHz). For
instance, the CO molecule has a B value in the ballpark of 60GHz or 2 cm−1.

We can also take away some information here about selection rules, which dictate which pairs
of states feature allowed transitions. Here we glean the following rules:

� In order to have a rotational spectrum, a rigid rotor must have a finite permanent dipole
moment, µ0 > 0. Homonuclear diatomic molecules like H2 or N2 do not have a microwave
spectrum within the rigid rotor approximation.

� The only transitions which contribute to the spectrum are between states labeled J,m and
J ± 1,m. We therefore learn that ∆J = ±1 and ∆m = 0 during an allowed rotational
transition.

Note: Our strategy here to find σ(ω) allowed us to solve for the entire rotational spectrum at once.
Another way to find the selection rules is to evaluate the transition rate between states |Y m

J ⟩ and
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Y m′
J ′ ⟩, which we know from time-dependent perturbation theory to be proportional to the square

of the matrix element:

ΓJ ′,m′←J,m ∝
∣∣⟨Y m

J |µ · ξ|Y m′
J ′ ⟩

∣∣2 (47)

This will yield the same answer. We won’t work through this here, but it is done out in McQuarrie
Section 6.7 for those interested.

3 Rotations of polyatomic molecules

3.1 Finding the principal axes of rotation

The rotations of nonlinear, polyatomic molecules are considerably more interesting than diatomic
molecules. The moment of inertia of a nonlinear molecule depends on which axis of the molecule
you spin it about. So there are two coordinate systems to think about: which lab frame axis we
spin the molecule about, and which molecular frame axis we spin the molecule about.

The concept of principal moments of inertia will be very helpful to treat this situation. Assuming
that our polyatomic molecule rotates as a rigid body, we can write down its moment of inertia I
when spun through its center of mass about an arbitrary axis:

I =
∑
i

MiR
2
i (48)

where Mi is the mass of the ith atom and Ri is that atom’s perpendicular distance from the axis
of rotation. Using the three Cartesian axes, we can define a 3 × 3 moment of inertia tensor (e.g.
matrix) to describe rotation about arbitrary axes. The moment of inertia tensor I has diagonal
and off-diagonal elements of the form

Ixx =
∑
i

Mi(y
2
i + z2i ) (49)

Ixy = −
∑
i

Mixiyi (50)

The moment of inertia tensor has real matrix elements and is therefore Hermitian. It can
be diagonalized to find three eigenvectors with real eigenvalues. The eigenvectors represent the
principal axes of the molecule, while the eigenvectors represent the principal moments of inertia
about these axes. The principal axes fall along axes of symmetry of the molecule. For instance, any
axis of rotational symmetry becomes a principal axis. You can also conceptualize principal axes in
more familiar terms. The rotation of an airplane is described in terms of rotations about its three
principal axes: pitch, roll, and yaw.

In the case of a nonlinear molecule, the three principal molecular axes are labeled a, b, c once
found, with the convention that these labels are determined by

Ic ≥ Ib ≥ Ia (51)

These principal axes make a remarkably useful coordinate system. We can decompose the total
rotational angular momentum in terms of them as follows:

L2 = L2
a + L2

b + L2
c (52)

La = Iaωa, Lb = Ibωb, Lc = Icωc (53)
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The kinetic energy operator for this rigid rotor is therefore:

K̂Erot =
L̂2
a

2Ia
+
L̂2
b

2Ib
+
L̂2
c

2Ic
(54)

This turns out to be much more complicated to express in any other coordinate system!

3.2 A note about coordinate systems

We are building towards finding the rotational energy eigenvalues of a polyatomic molecule. Before
we do so, we should make sure that we are working with good quantum numbers. Recall that
we have two sets of coordinates: the xyz axes are space-fixed coordinates set in the laboratory
frame while the abc axes are body-fixed coordinates that rotate with the molecule. The relationship
between these two coordinate systems is determined by three angles, called the Euler angles (θ, ϕ, ξ).

We can define the rotational angular momentum operators (and hence the Hamiltonian) in
either coordinate system. It is possible to show that the following commutators hold in either
coordinate system: [

L̂2, L̂x,y,z

]
= 0 (55)[

L̂2, L̂a,b,c

]
= 0 (56)

In other words, the square of the total rotational angular momentum L̂2 commutes with its pro-
jection on any one of the lab frame or molecular frame axes. Because both the total angular
momentum and either the space-fixed and body-fixed projection on any one axis will also com-
mute with the Hamiltonian, their J,m eigenvalues will be good quantum numbers to describe the
rotational energy.

3.3 Molecular tops

A molecule is called a symmetric top when two of its three principal moments of inertia are equal
and the third is non-zero. To be a symmetric top, a molecule must have a Cn (n ≥ 3) axis of
rotational symmetry.

Prolate tops feature

Ic = Ib > Ia (57)

and take on the shape of a football or a cigar. A molecular example is methyl iodide CH3I, where
the unique a axis with the smallest principal moment of inertia falls along the C3 axis of symmetry.

Oblate tops feature

Ic > Ib = Ia (58)

and look like a hockey puck or a frisbee. Benzene is a molecular example, where the unique c axis
falls along the C6 symmetry axis.

A special type of symmetric top called a spherical top occurs when

Ic = Ib = Ia (59)
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(a) prolate (b) oblate (c) spherical (d) near-prolate

Only molecules with very high symmetry are spherical tops. Some of the most common examples
are methane (CH4, tetrahedral symmetry), sulfur hexafluoride (SF6, octahedral symmetry), and
the C60 fullerene (icosahedral symmetry).

A molecule is an asymmetric top if it features no Cn rotational symmetry axis and all three
principal moments of inertia are unique

Ic ̸= Ib ̸= Ic (60)

Most molecules fall in this category.
Although only a small fraction of known molecules are true symmetric or spherical tops, a more

sizeable group falls into the category of “near-prolate” or “near-oblate” tops with:

Ic ≃ Ib > Ia (61)

Ic > Ib ≃ Ia (62)

Examples of near prolate tops are C2v molecules such as H2O and H2CO or ethylene, C2H4. We
will discuss in a moment why this is a useful designation!

3.4 Rotational Hamiltonians for symmetric tops

In general, the rotational Hamiltonian can be written as

Ĥrot = T̂rot =
L̂2
a

2Ia
+
L̂2
b

2Ib
+
L̂2
c

2Ic
(63)

Let’s first consider the case for a prolate top, where Ib = Ic. Recalling that L2 = L2
a + L2

b + L2
c

we can write:

Ĥrot =
L̂2
a

2Ia
+
L̂2
b

2Ib
+
L̂2 − L2

a − L2
b

2Ic
(64)

=
L̂2
a

2Ia
+

�
�
�L̂2
b

2Ib
+
L̂2 − L2

a −��L
2
b

2Ib
(65)

=
L̂2

2Ib
+
L̂2
a

2Ia
− L̂2

a

2Ib
(66)
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We’ve successfully rewritten the Hamiltonian in terms of the total angular momentum and its
projection on just one body-fixed axis, the molecular a axis. We know that:

L̂2|ψ⟩ = ℏ2J(J + 1)|ψ⟩ (67)

L̂a|ψ⟩ = ℏJa|ψ⟩ ≡ ℏK|ψ⟩ (68)

where we’ve labeled the projection of the total angular momentum on the unique principal axis of
the molecule as K, by convention.

We’re now in business to write down the resulting rotational energies:

Ĥrot|ψ⟩ = Erot|ψ⟩ =
[
ℏ2J(J + 1)

2Ib
+

ℏ2K2

2

(
1

Ib
− 1

Ia

)]
|ψ⟩ (69)

≡
[
BJ(J + 1) + (A−B)K2

]
|ψ⟩ (70)

where we define the three rotational constants as

A,B,C =
ℏ2

2Ia,b,c
(71)

For an oblate top, following a similar procedure with Ia = Ib lets one obtain:

Erot = BJ(J + 1)− (B − C)K2 (72)

The quantum number K can take values K = 0,±1,±2, · · · ± J . Each J level therefore has
2J+1 different K states, corresponding to the different quantized projections of J on the molecular
body-fixed axis. Furthermore, each J,K level features an additional 2J + 1 degenerate MJ levels,
corresponding to projections of J on the laboratory space-fixed axis, just like the diatomic rigid
rotor. Thus, the total statistical weight for each value of J is (2J + 1)2. We can fully specify any
rotational wavefunction with J,K,MJ quantum numbers.

The energy levels for representative prolate and oblate tops are shown below. Since A > B > C,
tracking the energy level of a particular J state across the different K stacks reveals that the energy
increases with K for a prolate top, and decreases with K for an oblate top.

The relevant selection rules for symmetric tops are similar to those of the rigid rotor, and can
be shown to be:

∆J = ±1 (73)

∆K = 0 (74)

µ0 > 0 (75)
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A rigorous derivation of these rules requires evaluating the transition integrals |⟨ψJKM |µ̂·ξ|ψJKM ⟩|2
per Fermi’s golden rule. However, we can still mention conceptually why ∆K = 0. Because
of the high symmetry of a symmetric top, the component of the molecular dipole moment lying
perpendicular to the symmetry axis is zero, and hence no torque can be applied about this axis by
the radiation’s electric field. Accordingly, the angular momentum about the symmetry axis cannot
change due to interaction with radiation, and ∆K = 0.

Because ∆K = 0 during a dipole-allowed transition, allowed transitions occur between J levels
within a given K-stack. The observable frequencies ∆E for a rigid symmetric top do not depend
on K and we find

∆E = 2B(J + 1) (76)

for the J → J + 1 transition, just as for a rigid diatomic rotor.

3.5 Spherical Tops

We also note quickly that the situation is quite simple for a spherical top. With Ia = Ib = Ic, we
find

Ĥrot =
L̂2

2Ib
(77)

Erot = BJ(J + 1) (78)

with ∆J = ±1. All (2J+1)2 levels corresponding to different body-fixed and space-fixed projections
of J are degenerate for a spherical top.

Since spherical tops are highly symmetric, they do not have a permanent dipole moment. So
would we even expect to observe a microwave spectrum? Within the rigid rotor approximation, no.
However, centrifugal distortion of the bonds can slightly break the symmetry, effectively converting
the molecule into a symmetric rotor. This yields a very small dipole moment, and therefore a weak
rotational spectrum.

3.6 Asymmetric tops

For asymmetric tops Ia ̸= Ib ̸= Ic, and the rotational Hamiltonian cannot be simplified. Approxi-
mate solutions are obtained by expanding the asymmetric top wavefunction in a basis of symmetric
top wavefunctions.

The spectrum of an asymmetric rotor may therefore be extremely complex, with an irregular
distribution of energy levels. The selection rules and transition probabilities between these levels
are complicated. Much of the complexity arises from the fact that in an asymmetric rotor the
permanent dipole moment may lie in any arbitrary direction with respect to the principal axes
of inertia. This is in contrast to spherical tops, whose permanent dipole moments fall along the
principal axes by symmetry.

4 Beyond the rigid rotor approximation

In reality, molecules are not rigid, and rotational motion will couple to vibrational motion of the
nuclei. For instance, the simplest correction you will see to the diatomic rigid rotor approximation
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is to include a centrifugal distortion term to the energy:

E(J) = BJ(J + 1)−DJJ
2(J + 1)2 (79)

This accounts for the fact that as a real molecule rotates the bond stretches out, increasing the
moment of inertia and decreasing the spacing between energy levels. This effect is amplified at
higher J , as the molecule spins increasingly quickly. The centrifugal distortion constant D is
typically much smaller than B. This correction means that adjacent transitions are no longer
perfectly spaced in frequency space:

∆E(J) = E(J + 1)− E(J) (80)

= 2B(J + 1)− 4DJ(J + 1)3 (81)

In the next lecture, we will consider transitions between vibrational states and vibration-rotation
interactions.
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