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Having covered the eigenstates and light-induced transitions for the rotation of rigid quantum
mechanical bodies, we now move on to consider the dynamcis of the relative motion of nuclei.

1 The diatomic harmonic oscillator

Consider two masses m1 and m2 connected by a spring. We can imagine that this system might be
a reasonable model for the vibration of a diatomic molecule connected by a chemical bond, which
like a mechanical spring has an equilibrium position and resists being compressed or extended.

m1 m2
k µk

We can reduce the movement of these two connected bodies to a one-body problem concerning
the motion of an effective inertial mass relative to a fixed rigid wall using the reduced mass:

µ =
m1m2

m1 +m2
(1)

If our molecule is in a bound electronic state that is stable with respect to dissociation, the potential
energy V (R) for this motion will have a minimum value −De at equilibrium bond length Re.
Expanding the potential in powers of R−Re, we can write:

V (R) = V (Re) +

(
dV

dR

)
Re

(R−Re) +
1

2

(
d2V

dR2

)
Re

(R−Re)
2 + . . . (2)

at R = Re, the first derivative vanishes, and including up to quadratic terms:

V (R) ≃ −De +
1

2
k(R−Re)

2 (3)

with k = d2V
dR2 |Re . This harmonic potential is a reasonable approximation for that of a chemical

bond, as long as we only consider small displacements from equilibrium. This corresponds to the
assumption that Hooke’s Law holds, with a linear restoring force F = −kx.
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2 Solutions to the HO Schrödinger equation

Let’s briefly review the wavefunctions and energy eigenvalues for the harmonic oscillator. The
Schrödinger equation is:

Ĥψn(x) =

[
−
ℏ2

2µ

d2

x2
+

1

2
kx2

]
ψn(x) = Enψn(x) (4)

→
d2ψn(x)

dx2
=

2µ

ℏ2

(
1

2
kx2 − En

)
ψn(x) (5)

over the window −∞ < x <∞.
The solutions to this differential equation take the form of a Hermite polynomial Hn multiplied

by an Gaussian exponential decay:

ψn(x) = Nn Hn(α
1/2x) e−αx2/2, n = 0, 1, 2, . . . (6)

where

α ≡

√
kµ

ℏ2
(7)

and the normalization constant for each wavefunction is

Nn =
1

(2n n!)1/2

(
α

π

)1/4

(8)

The first few Hermite polynomials are:

H0(y) = 1 (9)

H1(y) = 2y (10)

H2(y) = 4y2 − 2 (11)

H3(y) = 8y3 − 12y (12)

H4(y) = 16y4 − 48y2 + 12 (13)

. . .

The general form of the energy eigenvalues for the quantum HO are of course

En = ℏ

(
k

µ

)1/2(
n+

1

2

)
= ℏω0

(
n+

1

2

)
(14)

where

ω0 ≡

√
k

µ
(15)
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Note that the n = 0 state has zero-point energy E0 = 1
2ℏω0, and the quantum number n is the

same as the number of nodes in the nth wavefunction.
The energy eigenvalues are evenly spaced with separation ∆E = ℏω0 within the harmonic

oscillator approximation. The uniform spacing of these discrete states is peculiar to the HO. In
reality, this is a good approximation for the lowest few vibrational levels, but the higher levels will
lie much closer together due to “anharmonicities” in the potential curve as you approach the bond
dissociation energy.

3 The ladder operator formulation

Let’s also write down here the formulation of the HO Schrödinger equation and its solutions using
the much more elegant ladder operator formalism. Starting again with the HO Hamiltonian:

Ĥ = − ℏ2

2µ

d2

dx2
+

1

2
µω2

0x
2 (16)

we make the coordinate substitution x =
√

ℏ
µω0

q, and find

Ĥ =
ℏω0

2

[
− d2

dq2
+ q2

]
(17)

=
ℏω0

2

[(
− d

dq
+ q

)(
d

dq
+ q

)
+

d

dq
q − q

d

dq

]
(18)

=
ℏω0

2

[(
− d

dq
+ q

)(
d

dq
+ q

)
+ 1

]
(19)

where we’ve used the commutation relation d
dq q − q d

dq = 1; you can verify this by applying these
operators to a dummy function f(q).

3



At this point it is convenient to introduce our ladder operators:

â† ≡ 1√
2

[
− d

dq
+ q

]
=

1√
2
[q − ipq] raising/creation operator (20)

â ≡ 1√
2

[
d

dq
+ q

]
=

1√
2
[q + ipq] lowering/annihilation operator (21)

q and its conjugate momentum pq can equivalently be expressed as linear combinations of ladder
operators:

q =
1√
2

[
â† + â

]
→ x =

√
ℏ

2µω0

[
â† + â

]
(22)

pq =
i√
2

[
â† − â

]
→ px = i

√
ℏµω0

2

[
â† − â

]
(23)

The Hamiltonian can therefore be rewritten very simply as

Ĥ = ℏω0

[
â†â+

1

2

]
(24)

Though we won’t review it here, it’s straightforward to show that

â†|ψn⟩ =
√
n+ 1 |ψn+1⟩ (25)

â|ψn⟩ =
√
n |ψn−1⟩ (26)

which is of course the property that gives rise to the names “raising” and “lowering” operators,
and allows us an elegant means to iteratively calculate harmonic oscillator wavefunctions.

In preparation for calculating the absorption spectrum of our harmonic oscillator when irra-
diated with light, it’s also useful to write down the time-dependent forms of the ladder operators
within the Heisenberg picture:

â(t) ≡ eiĤt/ℏ â e−iĤt/ℏ (27)

= eiω0(N̂+ 1
2
)t â e−iω0(N̂+ 1

2
)t (28)

= eiω0N̂t â e−iω0N̂t (29)

where N̂ |ψn⟩ = n|ψn⟩.
It is now instructive to take the first derivative of â(t):

d

dt
[â(t)] =

d

dt

[
eiω0N̂t

]
â e−iω0N̂t + eiω0N̂t â

d

dt

[
e−iω0N̂t

]
(30)

= iω0N̂ · eiω0N̂t â e−iω0N̂t + eiω0N̂t â · (−iω0N̂) · e−iω0N̂t (31)

= iω0 · eiω0N̂t
[
N̂ â− âN̂

]
e−iω0N̂t (32)

We can evaluate the commutator:[
N̂ â− âN̂

]
|ψn⟩ = N̂ â|ψn⟩ − âN̂ |ψn⟩ (33)

= N̂
√
n|ψn−1⟩ − â n|ψn⟩ (34)

= (n− 1)
√
n|ψn−1⟩ − n

√
n|ψn−1⟩ (35)

= −
√
n|ψn−1⟩ = −â|ψ⟩ (36)
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Therefore

d

dt
[â(t)] = −iω0 · eiω0N̂t â e−iω0N̂t (37)

= −iω0 â(t) (38)

And we find that

â(t) = e−iω0tâ (39)

Following a similar process, we can also find

â†(t) = eiω0t â† (40)

4 Selection rules for infrared spectroscopy

Let’s now evaluate the absorption lineshape for transitions between harmonic oscillator wavefunc-
tions induced by monochromatic radiation at frequency ω. Recall that we want to evaluate

σ(ω) =
1

2π

∫ ∞

−∞
dt e−iωt

∑
n

pn⟨n|µz(0) · µz(t)|n⟩ (41)

=
1

2π

∫ ∞

−∞
dt e−iωt

∑
n

pn⟨n|µz · e+iĤt/ℏ · µz · e−iĤt/ℏ|n⟩ (42)

Where again we have assumed a laser field polarized along the lab frame z axis. We will need an
expression for µz that accounts for the vibrational dynamics of the system.

In the case of a vibrating diatomic molecule, the nuclear dipole moment lies along the bond axis,
and its magnitude may change as the bond length oscillates during vibration. For the moment,
let’s neglect rotational motion and assume that our molecule is oriented along the z axis, so we
can use µ interchangeably with µz. We take the nuclear dipole moment to be weakly dependent
on the displacement of the vibrational coordinate by Taylor expanding it about its value at the
equilibrium bond length Re:

µ(R) = µ0 +

(
dµ

dR

)
Re

(R−Re) +
1

2

(
d2µ

dR2

)
Re

(R−Re)
2 + · · · (43)

where µ0 is the dipole moment at bond length Re. Let’s define x = R−Re. For small displacements
from equilibrium

∆µ ≡ µ− µ0 ≃
(
dµ

dx

)
x=0

· x (44)

In order to evaluate σ(ω), we can either work within the Heisenberg picture as laid out in Eqn.
41, or evaluate the product of operators explicitly in Eqn. 42. When we evaluated this expression for
the rigid rotor in a previous lecture, we took the latter strategy, so let’s use the Heisenberg strategy
for variety this time. In this case, we need to write down an expression for the time-dependent
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dipole moment operator. For simplicity, we will work with ∆µ(t) rather than µ(t), which contains
all the time-dependent information necessary to evaluate σ(ω).

∆µ(t) =

(
dµ

dx

)
x=0

· x(t) (45)

=

(
dµ

dx

)
0

·

√
ℏ

2µω0

[
â†(t) + â(t)

]
(46)

=

(
dµ

dx

)
0

·

√
ℏ

2µω0

[
â† · eiω0t + â · e−iω0t

]
(47)

Let’s begin by just considering the inner product:

⟨n|∆µ(0) ·∆µ(t)|n⟩ (48)

=⟨n|
(
dµ
dx

)
0
·
√

ℏ
2µω0

[
â† + â

]
·
(
dµ
dx

)
0
·
√

ℏ
2µω0

[
â† · eiω0t + â · e−iω0t

]
|n⟩ (49)

= ℏ
2µω0

·
(
dµ
dx

)2
0
⟨n|
[
�����
â†â†eiω0t + â†âe−iω0t + ââ†eiω0t + �����

ââe−iω0t
]
|n⟩ (50)

= ℏ
2µω0

·
(
dµ
dx

)2
0

[
⟨n|â†â|n⟩e−iω0t + ⟨n|ââ†|n⟩eiω0t

]
(51)

= ℏ
2µω0

·
(
dµ
dx

)2
0

[
ne−iω0t + (n+ 1)eiω0t

]
(52)

Because the |n⟩ states are orthonormal within the same electronic state, the only terms which
survive are the cross terms involving both â† and â, which connect |n⟩ to |n± 1⟩, then return it to
itself.

Let’s now return to evaluating the entire expression for σ(ω) using our result from Eqn. 52:

σ(ω) =
1

2π

∫ ∞

−∞
dt e−iωt

∑
n

pn⟨n|∆µ(0) ·∆µ(t)|n⟩ (53)

=
ℏ

4πµω0
·
(
dµ

dx

)2

0

∑
n

e−βℏω0(n+
1
2
)

Qvib

∫ +∞

−∞
dt e−iωt

[
ne−iω0t + (n+ 1)eiω0t

]
(54)

=
ℏ

4πµω0
·
(
dµ

dx

)2

0

∑
n

e−βℏω0(n+
1
2
)

Qvib

[
n · δ(ω + ω0) + (n+ 1) · δ(ω − ω0)

]
(55)

At reasonably low temperatures kBT << ℏω0, the population is nearly entirely in the ground
vibrational state, and this expression reduces to:

σ(ω) ∝
(
dµ

dx

)2

0

δ(ω − ω0) (56)

Note that this low-temperature limit is applicable to most vibrations at room temperature.
From our expression for σ(ω), we can glean the major selection rules of vibrational spectroscopy

within the harmonic oscillator limit:
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�

(
dµ
dx

)2
0
̸= 0. Motion along the vibrational coordinate x must change the dipole moment of

the molecule in order to observe an infrared spectrum. Homonuclear diatomics like H2 or N2

therefore feature neither a pure infrared spectrum nor a pure microwave spectrum.

� Within the harmonic oscillator approximation, transitions are only allowed between neighbor-
ing levels, with ∆n = ±1. This is because to first order, the transition dipole operator looks
like x, which can be expressed as a linear combination of ladder operators. The µ operator
therefore only serves to connect states on adjacent rungs of the ladder. Two phenomena can
relax this selection rule: (a) contributions higher order terms in the dipole expansion, and (b)
anharmonicity of the vibrational potential well (vide infra). In most cases, the “fundamental”
∆n = ±1 transitions always have vastly larger probabilites than “overtone” transitions with
∆n = ±2,±3, · · · .

5 Rovibrational spectroscopy of diatomic molecules

In reality, there is no such thing as pure vibrational spectroscopy, as each vibrational level has an
associated stack of rotational levels that must also be considered. When we discussed rotational
spectroscopy earlier, we considered transitions between rotational energy levels associated with
the same vibrational level (typically v = 0). In vibration-rotation (or rovibrational) spectroscopy,
we consider transitions between the sets of rotational energy levels associated with two different
vibrational levels. Thus, a vibrational “band” associated with v′ ↔ v′′, is actually associated with
a series of “lines” corresponding to v′J ′ ↔ v′′J ′′.

Assuming for the moment that the rotational and vibrational motion are independent, we can
express the total rotational-vibrational energy by simply taking the sum of the rotational and
vibrational energies, and labeling each state with both a vibrational quantum number, n, and a
rotational quantum number J :

En,J = (n+ 1
2)ℏω +BnJ(J + 1) (57)

Where we label the rotational constant in vibrational state n as Bn to indicate that it’s value may
depend slightly on the vibrational state.

Because we’re taking our vibrational and rotational motion to be independent, the selection
rules we have already derived still hold:

∆n = ±1 (58)

∆J = ±1 (59)
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The fact that J = ±1 during a transition leads to two “branches”:

R-branch: n→ n+ 1, J → J + 1 “richer” (60)

P-branch: n→ n+ 1, J → J − 1 “poorer” (61)

Assuming Bn ∼ B for all n, we can evaluate the transition energies, where J always labels the
angular momentum in the lower vibrational state:

R-branch: Ẽn+1,J+1 − Ẽn,J = (n+ 1 + 1
2)ν̃ + B̃(J + 1)(J + 2) (62)

− (n+ 1
2)ν̃ − B̃J(J + 1) (63)

= ν̃ + 2B̃(J + 1), J = 0, 1, 2, . . . (64)

P-branch: Ẽn+1,J−1 − Ẽn,J = (n+ 1 + 1
2)ν̃ + B̃(J − 1)J (65)

− (n+ 1
2)ν̃ − B̃J(J + 1) (66)

= ν̃ − 2B̃J, J = 1, 2, 3, . . . (67)

We therefore find a manifold of evenly spaced rotational transitions clustered around the “band
origin” at wavenumber ν̃ where the ∆J = 0 vibrational transition would occur.

Note that the selection rule ∆J = ±1 holds only for a molecule in a Σ electronic state. Transitions
with ∆J = 0 can appear and give rise to a “Q branch” when the electronic angular momentum of the
diatomic molecule is non-zero. Q-branches also appear for certain bands in non-linear polyatomic
molecules.

A closer look at actual spectra reveals that the P and R branches are not actually symmetric,
resulting from the fact that the value of the rotational constant does depend on vibrational state,
and Bn ̸= Bn+1 in general. Measuring the exact positions of transitions in both the P and R
branches would allow you to fit the state-dependent rotational constants.
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6 Beyond the harmonic oscillator / rigid rotor approximation

For a diatomic molecule, there are two major ways in which the rigid rotor / harmonic oscillator
approximation can break down: anharmonicity, and centrifugal distortion. Their inclusion leads to
a more accurate expression for rovibrational energy given by:

Evr = ℏωe(n+ 1
2)− ℏωexe(n+ 1

2)
2 + · · ·+BvJ(J + 1)−DvJ

2(J + 1)2 + · · · (68)

6.1 Anharmonicity

The harmonic potential is clearly not a perfect approximation for the vibrational motion of a
diatomic molecule. A more appropriate potential would approach zero as R → 0 and the nuclei
become non-interacting, have a minimum at R = Re, and go to large values as R → 0 and the
nuclei overlap. A simple potential which achieves these criteria is the Morse potential, given by:

V (R) = De(1− e−β(R−Re)2 (69)

where the dissociation energyDe, the equilibrium bond length Re, and the curvature of the potential
a near the minimum are the three adjustable parameters. The major qualitative problem with
the Morse potential is that it does not in fact approach ∞ as R → 0. However, we know that
wavefunctions tail away to zero in classically forbidden regions, so as long as the potential is
sufficiently large at small R, this should not pose a significant problem.

The Morse potential is useful because the Schrödinger equation for its energy eigenvalues can
be solved analytically. The energies are

En = ℏωe(n+
1

2
)−

[
ℏωe(n+ 1

2)
]2

4De
(70)

where

ωe = β

√
2De

µ
(71)

is expressed in radians/second.
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You also commonly see these energies expressed in wavenumbers as “term values” G(n):

G(n) =
En

hc
= ω̃(n+ 1

2)− ω̃ex̃e(n+ 1
2)

2 (72)

ω̃e = β

[
Deℏ
πcµ

] 1
2

(73)

ω̃ex̃e =
ℏβ2

4πcµ
(74)

v = 0, 1, 2, . . . (75)

and where ω̃ex̃e is called the anharmonicity constant. Typically ω̃ex̃e << ω̃e.
Of course, the Morse oscillator is also an approximation, and a more perfect model must make

use of electronic structure calculations to map out the real curvature of the potential.

6.2 Centrifugal distortion

We already touched on this idea in our discussion of the rigid rotor. Rotational and vibrational
motion couple, and as the molecule spins more quickly, with larger angular momentum at larger
values of J , the bond lengthens. The effective moment of inertia increases, and the effective B
constant decreases at high J . This centrifugal distortion is often expressed to second order as:

Ev(J) = BvJ(J + 1)−DvJ
2(J + 1)2 + · · · (76)

where the rotational constant and centrifugal distortion constants are labeled with a v subscript to
indicate that their values depend on the vibrational state of the system.

7 Raman spectroscopy

We’ve talked now about infrared absorption spectroscopy - how absorption or emission of light can
drive transitions between pairs of (ro)vibrational states. Raman scattering is another extremely
common form of vibrational spectroscopy which does not involve direct absorption or emission of
radiation. Instead, it involves the elastic or inelastic scattering of incident radiation, accompanied
by a change in the internal state of the molecule in the case of inelastic scattering.

Technically we need second-order perturbation theory to describe Raman scattering, because
transitions between pairs of states are induced by the action of two light fields whose frequency
difference equals the energy splitting between states. However, we can describe Raman scattering
quite accurately if we replace the dipole operator with an induced dipole moment generated by the
incident field: µ→ µ

i
.

The incident field of light with electric field Ei polarizes the molecule according to its electric
polarizability α, which describes the ease with which the distribution of charges in a molecule is
distorted by an external electric field:

µ
i
= αEi(t) or (77)µixµiy

µiz

 =

αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

 Eix

Eiy

Eiz

 (78)
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where α is the polarizability tensor. This is a second rank tensor which tells you how well a light field
polarized along axis i can induce a dipole moment in the s direction. Note that in an atom, where
symmetry is spherical, the polarizability will be the same in all directions and can be expressed
by a single scalar quantity. For molecules with lower-than-spherical symmetry, the polarizability
is not the same in all directions, and, just as is true for moment(s) of inertia, describing the full
polarizability requires the use of a tensor. Just as the principal axes diagonalize the moment of
inertia tensor, so too can the polarizability tensor be diagonalized and a polarizability ellipsoid
defined.

In any event, the perturbation to the Hamiltonian from the scattered field Es(t) interacting
with this induced dipole is

V (t) = Es(t) · µi (79)

= Es(t) · αEi(t) (80)

= Es(t) · Ei(t) · ϵ̂s · α · ϵ̂i (81)

where ϵi and ϵs are unit vectors along the field directions of the incident and scattered fields.
This leads to an expression for the Raman lineshape as:

σ(ω) =
1

2π

∫ ∞

−∞
dt e−iωt ⟨ϵ̂s · α(0) · ϵ̂i · ϵ̂s · α(t) · ϵ̂i⟩ (82)

Let’s assume for the moment that we can set ϵ̂i = ϵ̂s = ẑ with our experimental configuration,
though the following process would work just as well for any pair of laboratory coordinates. Then:

σ(ω) =
1

2π

∫ ∞

−∞
dt e−iωt

∑
n

pn⟨n|αzz(0) · αzz(t)|n⟩ (83)

How to proceed from here? We can follow much the same procedure that we did for the absorption
spectrum of the harmonic oscillator. We take the polarizability to be a weak function of vibrational
displacement x:

αzz = αzz,0 +

(
dαzz

dx

)
0

· x+ · · · (84)

Just as we did for the harmonic oscillator, we can use the time-dependent ladder operator expansion
of x to find, very qualitatively:

σ(ω) ∼
(
dαzz

dx

)2

0

· δ(ω ± ω0) (85)

The big takeaways from this exercise are:

� The zeroth order components of the polarizability like αzz,0 give rise to elastic Rayleigh
scattering, where the incident and scattered fields have the same frequency, and the vibrational
state of the molecule is unchanged.

� For proper Raman scattering, the vibrational quantum number of the molecule can be changed
by ∆n = ±1 just as we saw for infrared absorption. ∆n = +1 corresponds to Stokes shifted
Raman scattering, where the molecule absorbs energy and scatters a photon of a lower fre-
quency, while ∆n = −1 corresponds to anti-Stokes shifted Raman scattering, where the
molecule gives up energy to the scattered field.
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� Raman active vibrations must feature motion of the nuclei along a coordinate which changes
the polarizability of the system, e.g.

(
dα
dx

)
0
> 0. In a polyatomic molecule, vibrational modes

of different symmetries can enable Raman scattering along different polarization axes.
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