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We’ve talked extensively now about the vibrational quantum structure of diatomic molecules,
and it’s time now to extend this treatment to polyatomic molecules.

1 A classical treatment of polyatomic vibrations

For a molecule with N atoms, there are a total of 3N degrees of freedom in free space, since
we can think about each atom moving along the three Cartesian coordinate axes. Three of the
collective modes will involve translation of the entire molecule along the three Cartesian directions.
Symmetric and asymmetric tops have an additional three degrees of freedom involved in rotation,
while diatomic and linear molecules only have two rotational degrees of freedom because there is
no moment of inertia about the internuclear axis. Thus, there are 3N − 6 collective vibrational
degrees of freedom for symmetric and asymmetric tops, and only 3N − 5 for linear molecules.

Let’s consider displacements within the molecule-fixed (e.g. body-fixed) frame:

(a, b, c)α molecule-fixed coordinate for atom α (1)

(a, b, c)α,e molecule-fixed equilibrium positions (2)

(x, y, z)α = (aα − aα,e, bα − bα,e, cα − cα,e) displacement coordinates (3)

To examine the energetics of this system, let’s start by writing down an expression for kinetic
energy. The kinetic energy of vibration is given by:

KE =
1

2

N∑
α=1

mα

[(
dxα
dt

)2

+

(
dyα
dt

)2

+

(
dzα
dt

)2
]

(4)

Let’s simplify this a bit by introducing mass weighted coordinates:

q1 = m
1/2
1 x1, q2 = m

1/2
1 y1, . . . q3N = m

1/2
N zN (5)
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so we can write

KE =
1

2

3N∑
α=1

(
dqi
dt

)2

=
1

2

3N∑
α=1

q̇2i ≡ 1

2
q̇⊺ · q̇ (6)

where in matrix form

q̇ =


q̇1
q̇2
...
q̇3N

 (7)

Next, we can consider the (classical) potential energy, which for now we’ll label U(q1, . . . , q3N ).
As we have often done in this course, it is helpful to expand the potential energy in a Taylor series
about the equilibrium molecule-fixed positions where Ue = U(q1 = 0, . . . , q3N = 0):

U(q1, . . . , q3N ) = Ue +
3N∑
i=1

(
∂U

∂qi

)
e

qi +
1

2

3N∑
i=1

3N∑
k=1

(
∂2U

∂qi∂qk

)
e

qiqk (8)

+
1

6

3N∑
i=1

3N∑
j=1

3N∑
k=1

(
∂3U

∂qi∂qj∂qk

)
e

qiqjqk + · · ·

Now we can always define our energy scale such that Ue = 0. Further, if we are at or close to
the equilibrium positions of the atoms, then U is always near a potential minimum, and(

∂U

∂qi

)
e

≃ 0 (9)

If we make the further assumption that vibrations may be treated harmonically (e.g. that Hooke’s
law is valid), then all terms with third-order derivatives and higher vanish in our Taylor expansion.
We can therefore write:

U ≃ 1

2

3N∑
i=1

3N∑
k=1

(
∂2U

∂qi∂qj

)
e

qiqj (10)

=
1

2

[
q1 · · · q3N

]


(
∂2U

∂q1∂q1

)
e

· · ·
(

∂2U

∂q1∂q3N

)
e

...
. . .

...(
∂2U

∂q3N∂q1

)
e

· · ·
(

∂2U

∂q3N∂q3N

)
e



q1

· · ·

q3N

 (11)

≡ 1

2
q⊺ ·U · q (12)

For our later manipulations, it will be useful to define the matrix elements of U as:

Uik =

(
∂2U

∂qi∂qk

)
e

(13)
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Now that we have expressions for the kinetic and potential energy of the system, we can approach
a solution for the classical equations of motion of the system using Newtonian mechanics (F = ma).

First let’s consider the force and acceleration of atom α along the xα coordinate. First, force is
given by the derivative of the potential with respect to displacement (e.g. work over distance):

Fx,α = − ∂U

∂xα
= −∂U

∂qj

∂qj
∂xα

= −m1/2
α

∂U

∂qj
(14)

where we had defined qj = m
1/2
α xα and therefore ∂qj/∂xα = m

1/2
α .

Next, let’s write down an expression for mass × acceleration of this atom, which we can then
equate with Eqn. 14 using Newton’s second law.

mα · ax,α ≡ mα
d2xα
dt2

= mα
d2

dt2

(
qj

m
1/2
α

)
= m1/2

α

d2qj
dt2

(15)

Setting Eqns. 14 and 15 equal, we find;

−m1/2
α

∂U

∂qj
= m1/2

α

d2qj
dt2

(16)

→ d2qj
dt2

+
∂U

∂qj
= 0 (17)

This is true for each degree of freedom of each atom with j = 0, . . . , 3N . This gives us a system
of 3N coupled equations. To evaluate this, we can recall our definition for U as a function of the
coordinates qi. Recall:

U ≃ 1

2

3N∑
i=1

3N∑
k=1

Uikqiqk (18)

=
1

2

[
U11q

2
1 + U12q1q2 + · · ·+ U1kq1qk + Uk1qkq1 + · · ·+ Ukkq

2
k + . . .

]
(19)

→ ∂U

∂qj
=

1

2

[
Ujj · 2 · qj

]
+

1

2

3N∑
k=1
k ̸=j

[Ujk + Ukj ] qk (20)

= Ujj · qj +
3N∑
k=1
k ̸=j

Ujk · qk =
3N∑
k=1

Ujk · qk (21)

And therefore, Eqn. 17 can be re-expressed as:

d2qj
dt2

+

3N∑
k=1

Ujk · qk = 0 (22)

It now becomes clear that this set of 3N equations of motion will take some effort to solve because
each equation involves all 3N of the qi coordinates. We can posit a solution to this problem by
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defining normal coordinates, Qi, which are linear combinations of the atomic displacements:

Qi =
3N∑
k=1

cikqk (23)

where the cik coefficients are to be determined. Note that we can also define the vector form of
these coordinates:

Q =


Q1

Q2
...

Q3N

 (24)

We want to define Q such that each Qi(t) can be found by solving a differential equation that is
independent of the dynamics of all other Qk ̸=i. So, how do we find these new coordinates? In
brief, we need to find a coordinate transformation {qi} → {Qi} that diagonalizes U, since it is the
off-diagonal terms Ujk that make Eqn. 22 difficult to solve.

We’ll therefore carry out the following procedure:

1. Find the 3N eigenvalues λm of U given by det(U− λmI) = 0.

2. Find the 3N eigenvectors Lm of U such that ULm = λmLm. Normalize each Lm such that
L⊺
mLm = 1.

3. Construct the matrix L whose columns are the Lm eigenvectors:

L = [L1;L2; . . . ;L3N ] (25)

Because each Lm is normalized, L will be unitary, e.g. L⊺L = I.

4. It turns out that through the magic of linear algebra, our L matrix provides a coordinate
transformation between qi and the Qi coordinates which will diagonalize U. In particular:

Q = L⊺q q = LQ (26)

5. L also allows us to perform the following transformation of U:

L⊺UL = Λ with Λij = δij · λi (27)

Λ is a diagonal matrix with the same eigenvalues as U. We can say that L diagonalizes U
through a unitary transformation.

Now, let’s recall our expression for the potential energy from Eqn. 12:

U(q1, . . . q3N ) =
1

2
q⊺Uq (28)

=
1

2
(LQ)⊺U (LQ) (29)

=
1

2
Q⊺ L⊺ULQ (30)

=
1

2
Q⊺ΛQ = U(Q1, . . . Q3N ) (31)
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Since Λ is a diagonal matrix, we arrive at the following beautiful result:

U(Q1, . . . Q3N ) =
1

2

3N∑
k=1

λkQ
2
k (32)

Finally, we note that (for a nonlinear molecule), three of our Qk normal modes will represent
translations of the entire system and three will represent rotations, neither of which distort the
bond lengths between atoms. In free space, these translational and rotational degrees of freedom
will not alter the potential energy of the system, and their λk will be zero. We can therefore write:

U(Q1, . . . Q3N ) =
1

2

3N−6∑
k=1

λkQ
2
k (33)

for a nonlinear molecule. This represents a dramatic simplification in that U is now a single sum,
rather than a double sum obtained in the original mass-weighted Qi coordinates.

For good measure, let’s also find the kinetic energy in our new normal coordinates. We can
start from Eqn. 6 and find:

KE =
1

2
q̇⊺ · q̇ =

1

2
(LQ̇)⊺LQ̇ (34)

=
1

2
Q̇⊺L⊺LQ̇ =

1

2
Q̇⊺Q̇ (35)

Evaluating Newton’s second law for force and acceleration along the Qk coordinates, just as we
did in Eqn. 17 with qk, we find:

∂2Qk

∂t2
+

∂U

∂Qk
= 0 (36)

=
∂2Qk

∂t2
+

∂

∂Qk

[
1

2

∑
i

λkQ
2
i

]
(37)

→ ∂2Qk

∂t2
+ λkQk = 0 (38)

We’ve finally arrived at the major result here. Just as the principal axes diagonalized the moment
of inertia tensor for polyatomic molecules, normal coordinates “diagonalize” the kinetic energy and
potential energy expressions and yield a set of 3N − 6 independent differential equations. The
definition of these normal coordinates depend sensitively on both the symmetry of the molecule
and the potential. It’s also worth remembering that normal mode theory depends on the harmonic
approximation!

Eqn. 38 is very simple to solve and allows us to extract the resonant frequencies of the system.
The classical solutions are:

Qk(t) = Ak sin(λ
1/2
k t+ ϕk) (39)

ωk = λ
1/2
k (40)
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2 A quantum mechanical treatment of polyatomic vibrations

Our classical normal mode solutions derived above provide a very straightforward quantum me-
chanical generalization of the one-dimensional harmonic oscillator. In normal coordinates, the
vibrational Schrödinger equation becomes:[

−ℏ2

2

3N−6∑
k=1

∂2

∂Q2
k

+
1

2

3N−6∑
k=1

λkQ
2
k

]
|Ψ⟩ = E|Ψ⟩ (41)

Since the Hamiltonian is now a linear sum over 3N − 6 independent harmonic oscillator equa-
tions, the overall vibrational wavefunction |Ψ⟩ can be written as a neatly-factored product of the
wavefunctions for each vibrational degree of freedom:

Ψ(Q1, Q2, · · ·Q3N−6) =
3N−6∏
k=1

ψnk
(Qk) (42)

where nk is the vibrational quantum number of the kth normal mode. The individual ψnK are
simply those of a one-dimensional harmonic oscillator in the individual normal mode coordinates.

The energy of each normal mode is therefore

Enk
= ℏωk

(
nk +

1

2

)
(43)

where ωk = λ
1/2
k . The total vibrational energy of the system is

E =
3N−6∑
k=1

ℏωk

(
nk +

1

2

)
(44)

Where of course for linear molecules, the expressions above run to 3N − 5 instead of 3N − 6.
States with one normal mode quantum number nk = 1, and all others ni ̸=k = 0 are called

fundamental vibrations. States in which nk ≥ 2, ni ̸=k = 0 are called overtones. States in which two
or more normal mode quantum numbers are non-zero are called combination modes.

The intensities of transitions between, e.g., the vibrational ground state and the various fun-
damental, overtone, and combination bands is governed, as always, by the electric dipole selection
rules. If we expand the Cartesian components of the dipole moment in a power series in the normal
mode coordinates, we have:

µx,y,z = µ0x,y,z +
3N−6∑
k=1

(
∂µx,y,z
∂Qk

)
0

Qk + · · · (45)

through first order. For the kth normal mode, the harmonic oscillator selection rules can be gener-
alized to:

∆n1 = 0,∆n2 = 0, · · · ,∆nk = ±1, · · · ,∆n3N−6 = 0 (46)

with an absolute intensity that is proportional to the square of the dipole derivative with respect
to Qk evaluated at the equilibrium geometry: |∂µx,y,z/∂Qk|20.

6



Again, we see that the normal modes are uncoupled, and that to first order overtone and com-
bination transitions are not allowed. The addition of anharmonicity does allow ∆nk = ±2,±3, · · ·
overtone transitions. Combination transitions ∆ni,∆nk = ±1, · · · will not appear unless there is a
coupling of the dipole moment surface between two or more normal modes. Symmetry and group
theory offers the easiest route to deciding whether a transition is permitted or forbidden. That is
the topic to which we turn next.

3 Normal modes and molecular symmetry

Let’s dip our toe briefly into group theory now, which we can use to drastically simplify finding
and working with vibrational normal modes. Molecules are assigned to point groups which char-
acterize their various symmetry elements. We’ll use the C2v point group to treat water here as a
representative example.

Molecules that belong to the C2v point group have one C2 rotational axis, which we define to
fall along the z molecular-frame axis, and two σv mirror planes that lie parallel to the C2 axis.
The character table for the C2v point group is reproduced below, and features four irreducible
representations that govern how symmetric objects like molecular orbitals and vibrational normal
modes transform with respect to these symmetry elements. Irreducible representations labeled with
A(B) are (anti)symmetric with respect to rotation about the C2 axis, while labeled with 1(2) are
(anti)symmetric with respect to reflection through the xz mirror plane.

Table 1: C2v character table
C2v E C2(z) σv(xz) σv(yz) linear quadratic

A1 +1 +1 +1 +1 z x2, y2, z2

A2 +1 +1 −1 −1 Rz xy
B1 +1 −1 +1 −1 x,Ry xz
B2 +1 −1 −1 +1 y,Rx yz

Why are these symmetry operations useful? Consider for a moment the (e.g. electronic or vibra-
tional) wavefunction of a molecule, which obeys Ĥψn = Enψn. If ÔR is an operator corresponding
to one of the symmetry operations in the point group of the molecule, then it can be shown that
ÔR commutes with the Hamiltonian:

[ÔR, Ĥ] = 0 (47)

This makes sense! The symmetry operations of a molecule reorganize its framework into a new
state that is indistinguishable from the original, and so we do not expect the energy of the system
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to be changed. Thus, we are free to choose wavefunctions such that they are eigenfunctions not
only of the Hamiltonian, but also of the symmetry operations within our point group. We’ll
therefore demand that our vibrational normal modes transform as an irreducible representation of
the relevant molecular point group.

So let’s return to considering the vibrational normal modes of water. Recall that we have
3N = 9 degrees of freedom for this system. 3N − 6 = 3 of these will be vibrations, 3 will be
rotations, and 3 will be translations. How do we find the symmetries of the vibrational normal
modes?

To examine the symmetries of the system, we must look at the effects of the four symmetry
operations, Ê, Ĉ2, σ̂v(xz), and σ̂v(yz) on the 3N atomic coordinates. To do this properly for water,
one would create 9 × 9 matrix representations of the symmetry operators which would then act
on the [x1, y1, z1, . . . , x3N , y3N , z3N ] vector of coordinates. Ê for instance would be given by the
identity matrix. All we will actually need are the traces of these matrices, which are given below:

Table 2: Reducible representation of the 3N atomic coordinates of H2O

Operation Ê Ĉ2(z) σ̂v(xz) σ̂v(yz)

Γ3N (H2O) 9 −1 +1 3

Another way to think about this “reducible” representation of our 3N coordinates is that it gives
us a count of how many atomic coordinates are either “preserved” or “flipped” by each symmetry
operation. Ê preserves all 9 coordinates. Ĉ2 rotates the molecule by 180 degrees about the z axis,
so only z2 is preserved while x2 and y2 are flipped to −x2,−y2. The coordinates on atoms 1 and
3 are swapped to entirely new locations in space, so they are discarded from this count. The final
count is one “preserved” coordinate minus two “flipped” coordinates, to yield a sum of −1 in the
Ĉ2 column.

The full Γ3N (H2O) reducible representation can then be broken into a linear combination of
3N irreducible parts which transform according to the rows in the character table given earlier. In
the case of water, we can show that Γ3N can be decomposed as:

Γ3N (H2O) = 3A1 ⊕A2 ⊕ 2B1 ⊕ 3B2 (48)

Our last task is to break down this sum of irreducible representations into rotation, translation,
and vibration. The simplest way to do this is to consult the last columns of the character table.
Translation has the same symmetry properties as x, y, z, while rotation goes like Rx, Ry, Rz. From
the C2v table we can see that x→ B1, y → B2, z → A1, and Rx → B2, Ry → B1, Rz → A2.
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Therefore, for H2O:

Γtrans = 1A1 ⊕ 1B1 ⊕ 1B2 (49)

Γrot = 1A2 ⊕ 1B1 ⊕ 1B2 (50)

Γvib = 2A1 ⊕ 1B2 (51)

Thus, there are two normal modes of A1 symmetry, which is totally symmetry with respect to all
symmetry operations, and one of B1 symmetry, which is symmetric only with respect to Ê and one
of the σ̂v operations. The modes of A1 symmetry must maintain the C2v nature of the molecular
framework throughout the vibration and are clearly the symmetric stretch and the bend. The
remaining B2 mode is the asymmetric stretch. These three fundamental modes are by convention
labeled ν1, ν2, ν3 in the order given below:

Although the group theory treatment tells us what the symmetries of the vibrational modes
are, we must carry out the full normal mode analysis in order to predict their frequencies. This
requires a detailed knowledge of the potential energy surface, and falls into the domain of problems
best solved with your favorite quantum chemistry package.

We will examine, however, the role of symmetry in examining polyatomic vibrational selection
rules. Group theory will immediately allow us to state whether a certain transition is electric dipole
allowed or not.

Recall Fermi’s golden rule, which states that a transition between two pairs of states i and f is
allowed if:

⟨ψi|µ⃗ · ϵ̂|ψf ⟩ =
∫
ψ∗
i · µ⃗ · ϵ̂ · ψf dx dy dz ̸= 0 (52)

Using direct products of the relevant irreducible representations gives us an extremely convenient
shorthand for performing these integrals. In order for the transition to be allowed, the integrand
ψ∗
i · µ⃗ · ϵ̂ · ψf must be a totally symmetric function, because otherwise the integration over the

whole coordinate space will give zero. In group theoretical language, the product of the symmetry
types of the wavefunctions and that of the dipole operator must contain the totally symmetric A1

representation:

Γ(ψi)⊗ Γ(µ⃗ · ϵ̂)⊗ Γ(ψf ) ⊃ A1 (53)

The dipole operator always transforms like x, y, z, while for magnetic dipole, electric quadrupole, or
Raman transitions, we must examine matrix element symmetries involving higher-order operators
like x2, y2, xy, etc. which is why these various terms are included in the listings of character tables
in most spectroscopy textbooks. The most succinct rule of thumb is the following: Normal modes
that transform as (x, y, z) in a given point group will be infrared active, while normal
modes that transform as (xy, xz, yz, x2, y2, z2) will be Raman active.
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Table 3: C2v product table
C2v A1 A2 B1 B2

A1 A1 A2 B1 B2

A2 A2 A1 B2 B1

B1 B1 B2 A1 A2

B2 B2 B1 A2 A1

To wrap up this discussion, let’s consider again the C2v water molecule, where (x, y, z) corre-
sponds to (B1, B2, A1), and the (ν1, ν2, ν3) transitions have (A1, A1, B2) character. The product
table for the C2v point group is given above.

For the (000) → (001) transition we therefore have:

⟨000|(x, y, z)|001⟩ = A1 ⊗ [B1, B2, A1]⊗B2 = [A2, A1, B2] ⊃ A1 (54)

and so this transition is allowed. Similarly, we find that the other two fundamental transitions,
which involve A1 upper states, are allowed by the z component of the electric dipole.

Group theory will only tell you if a transition is allowed or not by symmetry. The quantitative
values of the dipole derivatives and anharmonicities determine the absolute strength.
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