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In these notes, we will work through simulations of the reflection and transmission spectra
for materials sandwiched inside planar Fabry-Pérot (FP) optical cavities. We will work through
treatment of the intracavity sample as a Lorentz oscillator. We also summarize transfer matrix
methodology for treatment of more complex multilayer cavity devices. For the FP cavity expressions
we largely follow the derivation used in Chapter 3 of “Quantum Electronics for Atomic Physics”
by Warren Nagourney. For the treatment of the complex index of refraction, permittivity, and
Lorentz oscillator model, we follow these notes from MIT OpenCourseWare and this technical note
from Horiba. For transfer matrix methodology, much more information can be found in Chapter
2 of Macleod’s “Thin-Film Optical Filters,” available online through the Princeton Library here.
Papers by Pettersson et al. and Peumans et al. are also good references which summarize these
results. The McGehee Group at Stanford has made some well-documented Matlab code available
here.

1 The two-mirror Fabry-Pérot cavity

Let’s consider a cavity with two mirrors labeled 1 and 2 (Fig. 1), spaced a distance L apart. We
assume that mirrors 1 and 2 are lossless, with reflection and transmission amplitude coefficients of
r1, t1 and r2, t2, respectively. We will eventually assume that these two mirrors are identical (e.g.
r1 = r2 and t1 = t2) but for the moment these indices are useful for bookkeeping. We will place
an absorptive material inside the cavity, which has its own amplitude transmission coefficient of t,
and a frequency-dependent refractive index n(ν).

Note that these lowercase r and t coefficients capture the effects that the mirrors have on the
amplitudes of fields of light, E. Once we start to talk about intensities, I, we will also find it useful
to define the intensity transmission and reflection coefficients:

R ≡ r21 = r22 (1)

T ≡ t21 = t22 (2)

where, since we are neglecting mirror losses,

T +R = 1 (3)

indicating that when light hits a mirror, 100% of its power is either transmitted or reflected.
Let’s now discuss briefly how to work with the amplitude reflection and transmission coefficients.

The transmitted amplitude of light is equivalent when approached from either side of an interface.
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Figure 1

As shown in Fig. 1, when an incoming field with amplitude E0 strikes mirror 1 from the left, the
transmitted field amplitude is ET = +E0t1. The same is true if mirror 1 is approached from the
right. For reflection, on the other hand, the amplitude coefficient has opposite sign when approached
from either side of an interface. See Nagourney Section 3.2 for more details on how this arises.
Here, we define our system such that when E0 approaches either mirror from outside the cavity
(e.g. from the left of mirror 1 or the right of mirror 2), the reflected amplitude is ER = −E0r1. If
we approach either mirror from inside the cavity, however, the reflected amplitude is ER = +E0r1.
These sign conventions are arbitrary, but it’s important to be consistent.

Another important point is that as light traverses the cavity, it accrues a phase shift, δ. To
derive an expression for δ, let’s consider monochromatic light with vacuum wavelength λ, and a
wavelength of λn = λ/n(ν) in our intracavity medium, with refractive index n(ν). For each integer
multiple of λn that the light travels inside the cavity, it accrues a phase shift of 2π. Therefore, for
one round trip through the cavity where the light travels a distance of 2L, the total phase shift can
be expressed as:

δ = 2π · 2L
λn

+ 2ϕ =
4πLn(ν)

λ
+ 2ϕ =

4πLn(ν)ν

c
+ 2ϕ (4)

where c is the speed of light, and ϕ is the phase change accrued upon a single reflection from each
mirror. For our purposes, ϕ can be neglected, since it will simply serve to shift all of our cavity
resonances by a common frequency offset. We also neglect the Gouy phase here for the same reason.

2 The reflected field amplitude

After we send our initial E0 field amplitude into the cavity, the total reflected amplitude ER can
be constructed by considering the interference of all possible field trajectories that have made any
integer number of passes through the cavity. Consider, as sketched in Fig. 2:
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Figure 2

ER =− E0 · r1 0 passes (5)

+ E0 · t1 · t · r2 · t · t1 · e−iδ 1 pass (6)

+ E0 · t1 · t · r2 · t · r1 · t · r2 · t · t1 · e−2iδ 2 passes (7)

+ . . .

This is an infinite geometric series, which we can simplify as

ER = −E0 · r1 + E0 · t21
[
t2r2e

−iδ
]
+ E0 · t21

[
t4r1r

2
2e

−2iδ
]
+ E0 · t21

[
t6r21r

3
2e

−3iδ
]
+ . . . (8)

= −E0 · r1 + E0 ·
t21
r1

[
t2r1r2e

−iδ + t4r21r
2
2e

−2iδ + t6r31r
3
2e

−3iδ . . .
]

(9)

= −E0 · r1 + E0 ·
t21
r1

∞∑
k=1

[
t2r1r2e

−iδ
]k

(10)

Since the terms within the sum above are all less than 1, we can use what we know about
geometric series. For |r| < 1

∞∑
k=0

rk =
1

1− r
→

∞∑
k=1

rk =
1

1− r
− 1 (11)
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So:

ER = −E0 · r1 + E0 ·
t21
r1

[
1

1− t2r1r2e−iδ
− 1

]
(12)

= −E0 · r1 + E0 ·
t21

��r1

[
�1− (�1− t2��r1r2e

−iδ)

1− t2r1r2e−iδ

]
(13)

= −E0 · r1 + E0

[
t2t21r2e

−iδ

1− t2r1r2e−iδ

]
(14)

= E0

[
t2t21r2e

−iδ

1− t2r1r2e−iδ
− r1 ·

1− t2r1r2e
−iδ

1− t2r1r2e−iδ

]
(15)

= E0

[
t2r2(t

2
1 + r21)e

−iδ − r1

1− t2r1r2e−iδ

]
= E0

[
t2r2e

−iδ − r1

1− t2r1r2e−iδ

]
(16)

where in the last step we used t21 + r21 = 1.

3 The circulating field amplitude

We can carry out a very similar calculation for the field circulating inside the cavity. We will
consider only the intracavity field propagating towards the right, in the region to the left of the
lossy medium:

EC = E0 · t1 (17)

+ E0 · t1 · t · r2 · t · r1 · e−iδ (18)

+ E0 · t1 · t · r2 · t · r1 · e−iδ · t · r2 · t · r1 · e−iδ (19)

+ . . .

= E0 · t1
[
1 + t2r1r2e

−iδ + t4r21r
2
2e

−2iδ + . . .
]

(20)

= E0 · t1
∞∑
k=0

[
t2r1r2e

−iδ
]k

(21)

= E0

[
t1

1− t2r1r2e−iδ

]
(22)

4 The transmitted field amplitude

Calculating the transmitted field is straightforward given the circulating field amplitude. For
each term in the sum of interfering waves, the field makes one additional pass through the lossy
intracavity medium and the second cavity mirror. So:
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ET = EC · t · t2 = E0

[
t1t2t

1− t2r1r2e−iδ

]
(23)

5 The transmitted intensity

When we use a square-law detector in the laboratory, we are measuring the intensity of fields of light
rather than their amplitudes. So it is useful to convert the amplitude quantities we’ve discussed so
far into intensities for the reflected, circulating, and transmitted fields of light in our FP cavity. In
general, intensity is related to the amplitude as:

I

I0
=

∣∣∣∣∣ EE0

∣∣∣∣∣
2

(24)

For cavity transmission in particular:

IT

I0
=

∣∣∣∣∣ET

E0

∣∣∣∣∣
2

=

∣∣∣∣∣ t1t2t

1− t2r1r2e−iδ

∣∣∣∣∣
2

(25)

=
t21t

2
2t

2

|1− t2r1r2e−iδ|2
(26)

=
t21t

2
2t

2

(1− t2r1r2e−iδ) · (1− t2r1r2e+iδ)
(27)

=
t21t

2
2t

2

1− t2r1r2(e+iδ + e−iδ) + t4r21r
2
2

(28)

=
t21t

2
2t

2

1− t2r1r2 · 2 cos δ + t4r21r
2
2

(29)

(30)

We can simplify this expression by assuming that our two mirrors are identical (r1 = r2, t1 = t2),
and using r21 = R, t21 = T .

IT

I0
=

T 2t2

1 +R2t4 − 2Rt2 cos δ
(31)

Finally, we can tweak this expression to capture the dependence of the cavity transmission
spectrum on a few important experimental parameters. From the Beer-Lambert Law, we know
that the intensity of light transmitted through the lossy intracavity medium decays exponentially
with its absorption coefficient α(ν) and the pathlength through the sample. Assuming the sample
fills the cavity, so the pathlength is L, we can state

t2 = e−α(ν)L (32)
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Figure 3

We will also include our expression for δ from Eqn. 4, to give:

IT

I0
=

T 2e−α(ν)L

1 +R2e−2α(ν)L − 2Re−α(ν)L cos
(
4πLn(ν)ν

c

) (33)

It is from the frequency dependence of the refractive index, the absorption coefficient, and the
round-trip phase shift that the interesting spectral properties of the Fabry-Pérot cavity emerges.
The cavity transmission spectrum for an empty cavity with R = 0.95, T = 0.05, L = 10µm, α = 0,
and n = 1 is shown in Fig. 3.

The positions of the cavity transmission maxima occur when cos
(
4πLn(ν)ν

c

)
is maximized, which

occur when

4πLn(ν)νm
c

= 2πm (34)

→ νm =
c

2n(ν)L
·m (35)

where m is an integer. These modes would be perfectly evenly spaced were it not for the frequency
dependence of n, which causes dispersion. The spacing between neighboring resonances is called
the free spectral range (FSR), and is given by

FSR =
c

2n(ν)L
(36)

Another useful cavity parameter is the finesse, F , which is a measure of how lossy the resonator
is. F is defined as the ratio between the FSR and the full-width-at-half-maximum cavity resonance
linewidth, ∆ν, and can be expressed for a lossless cavity as

F =
FSR

∆ν
≈ π

√
R

1−R
(37)

Note that the FSR is constrained solely by the cavity geometry and length, the finesse is constrained
by the quality of the mirrors, and the cavity linewidths depend on these two parameters. Wee
Nagourney Ch. 3 for more thorough discussion of these parameters and detailed derivations.
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6 The complex refractive index

We now have a good understanding of the optical properties of an empty Fabry-Pérot optical cavity.
We will next consider how to treat an intracavity molecular sample. In particular, how do we model
the refractive index n(ν) and absorption coefficient α(ν) of an arbitrary sample?

It is instructive to review what the refractive index actually captures about a material. Let’s
consider first the complex refractive index, n̄

n̄(ν) ≡ n(ν) + iκ(ν) (38)

which is composed of a real component, n(ν), what we usually think of as the “refractive index”
and the imaginary component κ(ν), also called the “extinction coefficient.” κ(ν) is closely related
to α(ν), as we will see in a moment. n(ν) captures the phase delay of light as it traverses the
medium, while κ(ν) captures the attenuation of the amplitude of that light.

To see these parameters in action, let’s consider a beam of light traversing our material in the
z direction with a sinusoidal electric field represented by the real part of a complex exponential

E(z, t) = Re
[−→
E0 · ei(k̄z−ωt)

]
(39)

Here k̄ is the complex wavevector given by

k̄ =
2π

λn
=

2πn̄

λ
=

2π(n+ iκ)

λ
(40)

where again, λn is the wavelength of light in the material, and λ is the vacuum wavelength. Plugging
this expression for k̄ back into Eqn. 39, we find

E(z, t) = Re
[−→
E0 · ei(2π(n−iκ)z/λ−ωt)

]
(41)

= e−2πκz/λ · Re
[−→
E0 · ei(2πnz/λ−ωt)

]
(42)

From inspection of Eqn. 42, it is clear that as we traverse a distance z into the material, the
electromagnetic field decays exponentially with κ, while n leads only to a change in the phase of
the wavefront. We can relate κ to the absorption coefficient α with reference to the Beer-Lambert
law. The attenuation of the intensity of the light goes like the field squared, and therefore:

e−αz =
[
e−2πkz/λ

]2
(43)

→α =
4πκ

λ
=

4πκν

c
(44)

7 The complex dielectric constant

It is also convenient to discuss the permittivity, or dielectric constant, of the sample, ϵ, which has
units of F/m. We will relate this parameter to the complex index of refraction. Permittivity is a
measure of the electric polarizability of a material under an applied field. ϵ has a frequency depen-
dence because the polarization of the material cannot change instantaneously under an oscillating
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field. Instead, the system can experience phase delays near resonances or that generally increases
with frequency.

We usually consider the permittivity of the system relative to that of the vacuum:

ϵr ≡
ϵ

ϵ0
(45)

which is a dimensionless complex quantity.
The complex index of refraction can be expressed in terms of the relative permittivity and its

magnetic analog, the relative permeability µr:

n̄ =
√
ϵr · µr (46)

For nonmagnetic materials and optical frequencies, it is a good assumption that µr = 1. Therefore

ϵr = n̄2 = (n+ iκ)2 = n2 − κ2 + 2inκ (47)

We will define the real and imaginary parts of ϵr such that ϵr = ϵ1 − iϵ2. Therefore

ϵ1 = n2 − κ2 (48)

ϵ2 = −2nκ (49)

It is straightforward to rearrange this system of equations to obtain n and κ in terms of ϵ1 and ϵ2.
Note that

ϵ21 + ϵ22 = (n2 − κ2)2 + 4n2k2 (50)

= n4 + κ4 − 2n2κ2 + 4n2κ2 (51)

= n4 + κ4 + 2n2κ2 = (n2 + κ2)2 (52)

→n2 + κ2 =
√

ϵ21 + ϵ22 (53)

And therefore, combining Eqn. 53 with Eqns. 48 and 49 we arrive at

n =

√√
ϵ21 + ϵ22 + ϵ1

2
(54)

κ =

√√
ϵ21 + ϵ22 − ϵ1

2
(55)

Eqns. 54 and 55 are general, regardless of the system under study or the functional form of
the permittivity. We will next consider a specific model system to help construct the complex
permittivity of a molecular sample.

8 The Lorentz oscillator model

When light strikes a sample, its oscillating electromagnetic field can drive the motion of nuclear or
electronic charges in the material, giving rise to vibrational or electronic optical transitions. The
Lorenz oscillator model treats the motion of nuclei or electrons in response to the driving field as
a damped harmonic oscillator.
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While we won’t work through all the details here, it is illuminating to write down the equation
of motion of such a system. The amplitude of displacement −→r (t) of a particle with charge Z and

mass m can be related to the external time-dependent electromagnetic field
−→
E0(t) by the differential

equation:

m · d
2−→r
dt2

+m · Γ0 ·
d−→r
dt

+m · ω2
t · r = −Z

−→
E0(t) (56)

where the first term on the left hand side represents the force due to acceleration, the second term
represents a viscous damping force with damping factor Γ0, and the third term is a restoring force
given by Hooke’s law where ωt is the resonant frequency of the oscillator. The right hand side
represents the total force felt on charge Z by the field.

If the external field takes the form
−→
E0(t) =

−→
E0 · eiωt, we can make the assumption that the

displacement of the particle has a similar time-dependent form −→r (t) = −→r ·eiωt, where −→r is complex
and will depend on the field’s driving frequency ω.

By plugging this functional form of −→r (t) into our differential equation Eqn. 56, we find

m
[
(−iω)2 · −→r · eiωt

]
+mΓ0

[
iω · −→r · eiωt

]
+mω2

t · −→r · eiωt = −Z
−→
E0 · eiωt (57)

= −→r
[
−mω2 + imωΓ0 +mω2

t

]
= −Z

−→
E0 (58)

→ −→r = −→r (ω) = −Z
−→
E0

m(ω2
t − ω2) + imωΓ0

(59)

We ultimately want relate this expression for field-induced displacement to the dielectric con-
stant of the material, which we can subsequently relate to the complex index of refraction. The
induced dipole moment −→µ is related to both the displacement and the polarizability of the material
α(ω) by

−→µ = −Z · −→r (ω) = α(ω) ·
−→
E0 (60)

→ α(ω) =
− Z · −→r (ω)

−→
E0

(61)

If we consider an ensemble of N oscillators per unit volume, the polarization per unit volume P (ω)
allows us to relate the polarizability α(ω) to the susceptibility χ(ω) by:

P (ω) = N · α(ω) · E(ω) = ϵ0 · χ(ω) · E(ω) (62)

→ χ(ω) =
N · α(ω)

ϵ0
(63)

χ(ω) is closely related to the relative dielectric constant by ϵr = 1 + χ(ω). So we now can write:

ϵr = 1 + χ(ω) = 1 +
Nα(ω)

ϵ0
= 1 +

N

ϵ0
·
− Z−→r (ω)

−→
E0

(64)

= 1−
NZ

ϵ0
−→
E0

· −Z
−→
E0

m(ω2
t − ω2) + imωΓ0

(65)

= 1 +
NZ2

mϵ0

[
1

(ω2
t − ω2) + iωΓ0

]
(66)
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The prefactor NZ2/mϵ0 is usually defined as the square of the “plasma frequency” ωp, which is an
innate property of the material and represents the resonant frequency with which the ensemble of
charges oscillates collectively. We can therefore write the dielectric constant of a Lorentz oscillator
as:

ϵr = 1 +
ω2
p

(ω2
t − ω2) + iωΓ0

(67)

We will now massage Eqn. 67 into a somewhat more useful form and also consider the possibility
of multiple resonant frequencies. We first define the low and high frequency limits of ϵr:

ϵs = ϵr(ω → 0) = 1 +
ω2
p

ω2
t

(68)

ϵ∞ = ϵr(ω → ∞) = 1 (69)

We can therefore rewrite Eqn. 67 as

ϵr = ϵ∞ +
(ϵs − ϵ∞) · ω2

t

ω2
t − ω2 + iΓ0ω

(70)

where we have abstracted the plasma frequency away into ϵ∞. The factor ϵs − ϵ∞ encodes the
oscillator strength. ϵ∞ can be higher than 1 for real systems where resonances of the system lying
at higher frequencies are not explicitly taken into account. Recalling that the relative dielectric
constant is related to the index of refraction by ϵr = n2, we can say ϵ∞ = n2

bg, where nbg is a
constant real component of the background refractive index, independent of frequency.

If we want to treat multiple resonant frequencies of the system, we assume that their contribu-
tions to the dielectric function add linearly. So for M resonant frequencies ωj we have

ϵr = n2
bg +

M∑
j=1

Aj · ω2
j

ω2
j − ω2 + iΓjω

(71)

where Aj represents the unitless oscillator strength for the jth resonant frequency, and Γj represents
its damping factor, which also turns out to be the full-width-at-half-maximum resonance linewidth.

We can split Eqn. 71 into its real and imaginary components:

ϵr = n2
bg +

M∑
j=1

Aj · ω2
j

ω2
j − ω2 + iΓjω

·

[
ω2
j − ω2 − iΓjω

ω2
j − ω2 − iΓjω

]
(72)

= n2
bg +

M∑
j=1

Ajω
2
j (ω

2
j − ω2)− iAjω

2
jωΓj

(ω2
j − ω2)2 + ω2Γ2

j

(73)

→ ϵ1 = Re[ϵr] = n2
bg +

M∑
j=1

Ajω
2
j (ω

2
j − ω2)

(ω2
j − ω2)2 + ω2Γ2

j

(74)

→ ϵ2 = − Im[ϵr] =

M∑
j=1

Ajω
2
jωΓj

(ω2
j − ω2)2 + ω2Γ2

j

(75)

Eqns. 74 and 75 can now be plugged into Eqns. 54 and 55 to obtain the index of refraction and
extinction coefficient of an arbitrary Lorentz oscillator.
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9 Some numerical examples

We now have all the pieces in place to take the empty cavity modeled in Fig. 3, and place a
molecular sample described as a Lorentz oscillator inside it.

Let’s set up an oscillator with a single resonant frequency ω1 = 2000 cm−1, linewidth Γ1 =
10 cm−1, oscillator strength A1 = 1 × 10−4, and nbg = 1. The dielectric constant, index of
refraction, and extinction coefficient are plotted as a function of frequency near ω1 in Fig. 4 using
the expressions we’ve just derived. We then plug n(ν) and α(nu) into Eqn. 33 to obtain the
transmission spectrum of a resonant Fabry-Pérot cavity, assuming the same cavity parameters we
used previously (R = 0.95, T = 0.05, L = 10µm).

Figure 4
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Fig. 5 repeats the same simulation carried out with various values of Ai:

Figure 5

And Fig. 6 show the same simulation with Ai = 1× 10−4 with the Lorentz oscillator frequency
systematically detuned from the cavity resonance, resulting in the appearance of asymmetric trans-
mission peaks.

Figure 6

One can also simulate tilting the cavity by angle θ by rescaling our expression for the wavevector
k̄ in Eqn. 40 by cos(θ), which causes the transmission peaks to move towards higher energies (shorter
wavelengths) as θ increases. The somewhat non-intuitive reasoning for these frequency shifts are
discussed further here and here. A simulated dispersion spectrum for a tilt-tuned planar Fabry-
Pérot cavity is shown in Fig. 7.

Figure 7
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10 The transfer matrix method for multilayer devices

What we have worked through thus far is valid for treating the cavity transmission spectrum of
an ideal two-mirror Fabry-Pérot cavity containing one slab of intracavity material with refractive
index n̄. In reality, we will often be dealing with cavities containing many thin film layers, e.g.
dielectric Bragg mirrors or more intricate multilayer cavity samples. As we worked through for
the Fabry-Pérot example, treating the reflected, intracavity, and transmitted cavity fields requires
the consideration of an infinite series of interfering reflections. A multilayer stack will have several
internal interfaces between media with different indices of refraction, each producing a reflected and
transmitted beam when lights strikes the interface. There are therefore going to be nested infinite
series of interfering beams due to all these interfaces. This seems like a difficult problem! The
“transfer matrix” (TM) method is an elegant way to perform the analyses we need while largely
bypassing explicit treatment of these infinite series.

In brief, the TM method tells us that if we know the input field into the multilayer stack, we
can use Maxwell’s equations to determine how the total field propagates through the medium and
across each interface, based on simple continuity conditions for the field. We won’t go through the
detailed derivation of these methods here, and will just summarize the important results.

Let’s assume that we have a plane wave of light incident along the x axis from the left which
impinges on a multilayer structure composed of m layers. Each layer is composed of a homoge-
neous, isotropic material, and has label j, a thickness dj , a wavelength-dependent complex index
of refraction n̄j = nj + iκj , and a dielectric constant ϵj = ϵ1,j − iϵ2,j = n̄2

j . To the left of the
stack (region j = 0) and to the right of the stack (region j = m + 1) we assume a transparent
ambient material (e.g. air or glass substrate). At any point inside layer j, the optical electric field
is composed of complex exponential components counter-propagating along the x-axis, E+

j (x) and

E−
j (x). The sum of these E+

j (x) and E−
j (x) components represent the total field inside layer j. In

reality, these net fields arise from the infinite series of reflected and transmitted beams within the
device.

The incoming and reflected fields in region 0 to the left of the stack, E+
0 (x) and E−

0 (x), are
related to the fields in region m + 1 to the right of the stack, E+

m+1(x) and E−
m+1(x) by a 2 × 2

scattering matrix S: [
E+

0

E−
0

]
= S

[
E+

m+1

E−
m+1

]
=

[
S11 S12

S21 S22

]
·
[
E+

m+1

E−
m+1

]
(76)

As we are only considering light impinging from the left, we assume E−
m+1 = 0, and therefore

E+
0 = S11 · E+

m+1 (77)

E−
0 = S21 · E+

m+1 (78)

We are ultimately in search of the reflection and transmission coefficients for the entire layered
structure, which we can express in terms of elements of the scattering matrix:

r =
E−

0

E+
0

=
S21

S11
R = |r|2 (79)

t =
E+

m+1

E+
0

=
1

S11
T = |t|2 (80)
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So how do we construct this scattering matrix? We build it up in pieces by relating the fields
E±

j and E±
k across each jk interface with an interface matrix Ijk, and by treating the propagation

of the field through layer j by the layer matrix Lj .
First, we will use an interface matrix Ijk that encodes the Fresnel coefficients for reflection and

transmission of the total field at an interface. These Fresnel coefficients are derived in MacLeod
Ch. 2 for those interested. [

E+
j

E−
j

]
= Ijk

[
E+

k

E−
k

]
(81)

Ijk =
1

tjk

[
1 rjk
rjk 1

]
(82)

rjk =



qj − qk

qj + qk
s-polarized

n̄2
kqj − n̄2

jqk

n̄2
kqj + n̄2

jqk
p-polarized

(83)

tjk =



2qj

qj + qk
s-polarized

2n̄jn̄kqj

n̄2
kqj + n̄2

jqk
p-polarized

(84)

qj = n̄j cosϕj =
[
n̄2
j − n2

0 sin
2 ϕ0

]1/2
(85)

Here we account for the light traveling through the ambient material with refractive index n0 before
hitting the stack at an angle of incidence ϕ0, with either s or p polarization. ϕj represents the angle
of refraction into layer j.

For the simplest case of normal incidence,

rjk =
n̄j − n̄k

n̄j + n̄k
(86)

tjk =
2n̄j

n̄j + n̄k
(87)

The layer matrix Lj encodes the absorption and change in phase of the field of light as it
propagates across layer j, where again dj is the thickness of layer j:

Lj =

[
e−iξjdj 0

0 eiξjdj

]
(88)

ξj =
2π

λ
qj (89)
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The total scattering matrix is then built up as a product of these interface and layer matrices

S =

 m∏
j=1

I(j−1)jLj

 · Im(m+1) (90)

It is therefore quite straightforward to calculate the transmission spectrum of an arbitrary multilayer
stack of thin films by calculating S according to Eqn. 90 and plugging the relevant matrix element
into Eqn. 80.

11 Calculating the intracavity field with TM

We can also use the scattering matrix S to calculate the amplitude of the internal electric field
within each layer as a function of distance into the stack. We can break S into components:

S = S′
jLjS

′′
j (91)

where

S′
j =

[
S′
j11 S′

j12

S′
j21 S′

j22

]
=

(
j−1∏
k=1

I(k−1)kLk

)
I(j−1)j (92)

S′′
j =

[
S′′
j11 S′′

j12

S′′
j21 S′′

j22

]
=

 m∏
k=j+1

I(k−1)kLk

 Im(m+1) (93)

(94)

and [
E+

0

E−
0

]
= S′

j

[
E′+

j

E′−
j

]
(95)[

E′′+
j

E′′−
j

]
= S′′

j

[
E+

m+1

E−
m−1

]
(96)

Here E′±
j and E′′±

j encode the electric field amplitudes inside layer j at the (j − 1)j and j(j + 1)
interfaces.

Just like we defined complex reflection and transmission coefficients r and t for the total scat-
tering matrix S, we can define partial coefficients

r′j ≡
S′
j21

S′
j11

t′j ≡
1

S′
j11

(97)

r′′j ≡
S′′
j21

S′′
j11

t′′j ≡ 1

S′′
j11

(98)

The physical meaning of these partial coefficients is a bit abstract. r′j represents the fractional
amplitude of light that would be reflected from the stack on the j = 0 side, considering only
interfering contributions up to reflections from the (j − 1)j interface. t′j represents the fractional
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Figure 8

amplitude of light that would be transmitted into layer j from the left, ignoring any interference
with light entering layer j from the j(j + 1) side.

We can use these partial coefficients to write down an expression for the internal field propa-
gating towards the right in layer j at the (j − 1)j boundary. We will consider the infinite series of
reflections between the two halves of the stack, as sketched in Fig. 8.

E+
j = t′j · E+

0 ·
[
eiξjdj · r′′j · r′−j · eiξjdj + eiξjdj · r′′j · eiξjdj · r′−j · eiξjdj · r′′j · eiξjdj · r′−j + . . .

]
(99)

= t′jE
+
0

∞∑
n=1

(
r′−jr

′′
j e

2iξjdj
)n

(100)

= E+
0

t′j

1− r′−jr
′′
j e

2iξjdj
(101)

where in the last step we have used the expression for infinite geometric series. r′j− ≡ −r′j , to

account for the change in sign for reflections on the internal side of the (j − 1)j interface. eiξjdj

represents the phase accrued by one pass through layer j. We can therefore define

t+j ≡
E+

j

E+
0

=
t′j

1− r′−jr
′′
j e

2iξjdj
(102)

Note that Eqn. 102 is defined at the (j−1)j interface. We can re-express it as a function of distance
x < dj into layer j from the (j − 1)j interface by noting that this extra propagation just adds an
additional phase factor of eiξjx. Therefore:

t+j (x) =
E+

j (x)

E+
0

=
t′je

iξjx

1− r′−jr
′′
j e

2iξjdj
(103)

We can follow the same process to derive the field amplitude propagating to the left in layer j
at the (j − 1)j interface, E−

j , by noting that E−
j derives directly from E+

j , but has undergone two
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additional complete passes through layer j and one additional reflection off the j(j + 1) interface:

E−
j = r′′j · ei2ξjdj · E+

j (104)

→ t−j ≡
E−

j

E+
0

= t+j · r′′j · ei2ξjdj (105)

And again, to express t−j as a function of propagation distance x into layer j, we just correct the

accrued phase by a factor of e−iξjx, to reflect the fact that last trip through layer j stopped short
of the (j − 1)j interface:

t−j (x) =
E−

j (x)

E+
0

= t+j r
′′
j · ei2ξjdj · e−iξjx (106)

= t+j r
′′
j · eiξj(2dj−x) (107)

We are now finally in a position to write down the total electric field in an arbitrary layer j:

Ej(x) = E+
j (x) + E−

j (x) (108)

=
[
t+j (x) + t−j (x)

]
E+

0 (109)

= t+j

[
eiξjx + r′′j e

iξj(2dj−x)
]
E+

0 (110)

and we can rewrite this in terms of the partial transfer matrix elements from Eqns. 97 and 98 as:

Ej(x) =
t′j

1− r′−jr
′′
j e

2iξjdj
·
[
eiξjx + r′′j e

iξj(2dj−x)
]
E+

0 (111)

=
1

S′
j11

· 1

1 +
S′
j21

S′
j11

S′′
j21

S′′
j11

· e2iξjdj
·
[
eiξjx +

S′′
j21

S′′
j11

eiξj(2dj−x)
]
E+

0 (112)

=
eiξjx +

S′′
j21

S′′
j11

· eiξj(2dj−x)

S′
j11 + S′

j21 ·
S′′
j21

S′′
j11

· e2iξjdj
· E+

0 ·
S′′
j11e

−iξjdj

S′′
j11e

−iξjdj
(113)

=
S′′
j11 · e−iξj(dj−x) + S′′

j21 · eiξj(dj−x)

S′
j11S

′′
j11 · e−iξjdj + S′

j21S
′′
j21 · eiξjdj

· E+
0 (114)

This expression therefore allows us to calculate the structure of electromagnetic modes propagating
in the cavity, using only matrix elements of the relevant partial scattering matrices. If we calculate
Ej(x) throughout the stack for frequencies of light that are resonant with the cavity, we can do
various useful things, including simulating the nodal structure of these resonant cavity modes and
their penetration depth into dielectric mirrors.
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