A particle in a simple harmonic oscillator (HO) potential energy well $V(x)=\frac{1}{2} k x^{2}$ has an initial wavefunction in the second excited state of the HO: $\Psi(x, t=0)=\Psi_{2}(x)$.

Choose all of the statements that are correct.
A. The expectation value of the position of this particle depends on time t
B. The expectation value of the momentum of this particle depends on time t
C. The expectation value of the energy of this particle depends on time t
D. None of the above

CHM 305 The Quantum World Lecture 10: Angular Momentum

McQuarrie Ch. 6

Last time we discussed the quantum harmonic oscillator

- Briefly lay out what we know about the classical harmonic oscillator
- Introduce the quantum harmonic oscillator, and its relevance to molecular vibrations
- Write down the Schrödinger equation for this system, and examine the resulting wavefunctions and energy eigenvalues
- Learn about some nice properties of these wavefunctions

Road map for today: angular momentum

- Lay out definitions for classical circular motion and angular momentum
- Discuss rotations of classical and quantum
 mechanical rigid bodies
- Write down the Schrodinger equation and its solutions for the quantum rigid rotor in spherical coordinates

$$
\begin{gathered}
\hat{H}=-\frac{\hbar^{2}}{2 \mu} \nabla^{2} \\
\hat{H} \psi(\theta, \phi)=E \psi(\theta, \phi)
\end{gathered}
$$

- Make connections to rotations of diatomic molecules and the hydrogen atom

Practice Problem \#1:

The rigid rotor Hamiltonian has the form

$$
\hat{H}=-\frac{\hbar^{2}}{2 I}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial}{\partial \theta}\right]+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right]
$$

and can also be written as

$$
\hat{H}=\frac{\hat{\ell}^{2}}{2 I}
$$

Do \hat{H} and $\hat{\ell}^{2}$ commute? What does this tell you about their eigenfunctions?
Can you draw an analogy to the energy and linear momentum of a free particle?

Spherical Harmonics

Practice Problem \#2:

$$
Y_{1}^{1} \quad Y_{1}^{0} \quad Y_{1}^{-1}
$$

Show that

$$
Y_{1}^{0}=\left(\frac{3}{4 \pi}\right)^{1 / 2} \cos \theta
$$

is a solution to the rigid rotor Hamiltonian

$$
\hat{H}=-\frac{\hbar^{2}}{2 I}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial}{\partial \theta}\right]+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right]
$$

and find its energy eigenvalue.

Hydrogen atom orbitals

	s ($\ell=0)$	$\mathrm{p}(\ell=1)$			$\mathrm{d}(\ell=2)$					f ($\ell=3$)						
	$m=0$	$m=0$	$m= \pm 1$		$\boldsymbol{m}=0$	$m= \pm 1$		$m= \pm 2$		$m=0$	$m= \pm 1$		$m= \pm 2$		$m= \pm 3$	
	s	p_{z}	p_{x}	p_{y}	$d_{z^{2}}$	$d_{x z}$	$d_{y z}$	$d_{x y}$	$d^{2}-y^{2}$	$f_{z^{3}}$	$f_{x z^{2}}$	$f_{y_{z}{ }^{2}}$	$f_{x y z}$	$f_{z\left(x^{2}-y^{2}\right)}$	$f_{x\left(x^{2}-3 y^{2}\right)}$	$f_{y\left(3 x^{2}-y^{2}\right)}$
$n=1$	-															
$n=2$	-															
$n=3$	-					0			\bigcirc							
$n=4$																
$n=5$. .	-••	\cdots	- \cdot	\cdots	\cdots	. \cdot •
$n=6$					\cdots	\cdots	. \cdot	' ${ }^{\prime}$	-' ${ }^{\prime}$	\cdots	$\cdots \cdot$	\cdots	- \cdot	\cdots	\cdots	\cdots
$n=7$		\cdots	-	. \cdot	- .	\cdots	-'	' ${ }^{\prime}$	- \cdot '	$\cdots \cdot$	$\cdots \cdot$	$\cdots \cdot$	- \cdot	- \cdot -	-••	-••

https://en.wikipedia.org/wiki/Atomic_orbital

