
CHM 305 - Lecture 11 - Molecular Spectroscopy

Prof. Marissa Weichman

The absorption of light can cause molecules to change their internal states, undergoing transi-
tions from one electronic, vibrational, and/or rotational state to another. These transitions occur
when the energy carried by the photon to be absorbed:

E = hν = ℏω =
hc

λ
(1)

is resonant with the gap in energy between two molecular states. It is also necessary that the
transition between those states is “allowed” by selection rules.

In this lecture, we will introduce rotational, vibrational, and ro-vibrational molecular spec-
troscopy by considering the “spectra” or sets of allowed transitions of diatomic molecules. This
material is covered in Chapters 5 and 6 of McQuarrie, alongside the coverage of the harmonic
oscillator and rigid rotor.

1 The Harmonic Oscillator and Vibrational Spectroscopy

The infrared spectrum of a diatomic molecule can be modeled by treating its vibrational levels as
a quantum harmonic oscillator and considering transitions between these levels. We learned that
the energy levels of the quantum harmonic oscillator are given by:

En = hν

(
n+

1

2

)
= ℏω

(
n+

1

2

)
n = 0, 1, 2, . . . (2)

where ω =
√

k
µ .

The molecule can make a transition from one vibrational energy level (n) to another (n′) by
absorbing or emitting radiation whose frequency matches the difference in energy levels ∆E =
En′ −En. Within the harmonic oscillator approximation, transitions are only allowed between
adjacent energy levels, with ∆n = ±1:

� for absorption of light, n → n′ = n+ 1

� for emission of light, n → n′ = n− 1.

These rules that determine which states can be reached by optical transitions are called selection
rules.

An additional rule for infrared spectroscopy is that the dipole moment of the molecule must
change as it undergoes vibrational motion – otherwise that vibration is not infrared-active.
This rule is usually summarized as dµ

dR > 0.

1



To give a concrete example, homonuclear diatomic molecules like H2 or O2 have a dipole moment
of zero, which remains zero as they vibrate. Homonuclear diatomics therefore have no infrared
spectrum.

While we do not derive them here, these vibrational selection rules are derived in McQuarrie
Section 5.12 for those interested.

For an IR-active vibration, the allowed transition energies for absorption of light are:

∆E = En+1 − En = hν(�n+ 1 + �
�1
2)− hν(�n+ �

�1
2) = hν (3)

which is independent of n! Because the harmonic oscillator has evenly spaced vibrational levels, all
transitions fall at the same frequency, and our diatomic molecule can therefore only absorb light
with the frequency (in Hertz) of:

νobs =
1

2π

(
k

µ

)1/2

(4)

This frequency will also commonly be expressed in wavenumbers (cm−1) as:

ν̃ =
νobs
c

=
1

2πc

(
k

µ

)1/2

(5)

Measuring a vibrational frequency in an infrared spectrum serves as a diagnostic, or fingerprint,
of that molecule, since ν̃ depends on the masses involved, as well as the bond strength k, which
encodes whether the molecule features a single, double or triple bond.

Practice Problem 1: Sketch the vibrational absorption spectrum of the HCl molecule, which has
a harmonic vibrational frequency of 2886 cm−1.

2 Beyond the Harmonic Oscillator

Let’s now briefly conisder two ways in which the vibrational structure of “real molecules” is more
complicated than what we’ve seen for the harmonic oscillator.

2



2.1 Anharmonicity

First, real vibrational motions involve “anharmonicity,” e.g. their potentials deviate from perfect
harmonic quadratic potential energy surfaces. We’ve already touched on this by looking at the
Morse potential:
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The harmonic oscillator is a reasonable approximation of this potential near the equilibrium ge-
ometry, but deviates substantially for x far from the center of the well. Correspondingly, the
vibrational levels of the Morse potential will deviate from those of the HO model. Note that the
Morse potential levels grow closer together as energy increases.

We can attempt to address this fact by adding in higher-order polynomial terms in our model
potential to account for this additional curvature of the well, like a Taylor expansion:

V (x) =
k

2
· x2 + c · x3 + d · x4 + . . . (6)

The new energy levels of this anharmonic potential can be found using perturbation theory. We’ll
just write down the result here, that we find higher-order corrections to the energy according to:

Evib(n) = ω̃e(n+ 1
2)− x̃eω̃e(n+ 1

2)
2 + . . . [in cm−1] (7)

where ω̃e is the anharmonic oscillator frequency, and x̃e is the anharmonicity constant, which is
typically much smaller than ω̃e. Typically, one would measure the anharmonicity in the IR spectrum
experimentally, then fit ω̃e and x̃eω̃e to the data.

One other note is that anharmonicity also changes the selection rules for IR transitions. For
absorption of IR light, we can now have:

∆n = +1, +2, +3 . . . (8)

where ∆n = +1 are fundamental transitions and ∆n = +2, +3 . . . are called overtones, and can
occur but are much weaker in intensity than the fundamental.

Practice Problem 2: Sketch the vibrational absorption spectrum of the HCl molecule, but now
treating it as a Morse oscillator.

2.2 Polyatomic molecules have multiple vibrational modes

We have limited our discussion here to diatomic molecules, which only have one vibrational degree
of freedom. the simplest polyatomic molecule with three atoms, like the water molecule, has three
vibrational degrees of freedom, which we describe with vibrational normal modes that involve
motion of the whole molecule, rather than just one bond. These vibrations will have different
frequencies, which act as fingerprints in the IR spectrum for functional groups present in a molecule.

While we won’t go further with this here, in general, a molecule with N atoms has 3N − 6
vibrational modes (though for the special case of linear molecules, there are 3N − 5 vibrational
modes).

Practice Problem 3: Sketch the vibrational absorption spectrum of the water molecule, treating
it as a harmonic oscillator. Water has three IR-active vibrations with frequencies near 1595, 3657,
and 3756 cm−1.
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3 The Rigid Rotor and Microwave Spectroscopy

The microwave spectrum of a diatomic molecule can be modeled by treating its rotational levels as
a rigid rotor and considering optical transitions between these levels. We learned that the energy
levels of the rigid rotor are given by:

EJ =
ℏ2

2I
J(J + 1) J = 0, 1, 2, . . . (9)

= BJ(J + 1) (10)

where B = ℏ2
2I is the rotational constant in Joules and J is the angular momentum quantum number.

When considering optically allowed transitions between rotational levels, our selection rule is
that ∆J = ±1. For absorption of light between states J and J ′ we must have J ′ = J + 1.

A molecule must also have a non-zero dipole moment in order to undergo pure rotational
transitions by absorbing light, so, for instance, homonuclear diatomic molecules like H2 or O2 have
no microwave spectrum! These selection rules are derived in McQuarrie Section 6.7 for those who
want to know more.

Let’s consider the transition energies for absorption of microwave light now:

∆E = EJ − EJ ′ (11)

= EJ+1 − EJ (12)

=
ℏ2

2I
[(J + 1)(J + 2)− J(J + 1)] (13)

=
ℏ2

2I
(J + 1)(J + 2− J) (14)

=
ℏ2

I
(J + 1) = 2B(J + 1) (15)

The transition energies are therefore a function of J . The series of rotational transitions from lower
state J are evenly spaced by 2B = ℏ2

I , in Joules.
We aren’t usually measuring spectra in Joules, however, so let’s write down some expressions

for energy in more convenient units:

ν(Hz) =
∆E

h
=

ℏ2

I

1

h
(J + 1) =

h

4π2I
(J + 1) (16)

ν̃(cm−1) =
ν

c
=

h

4π2Ic
(J + 1) ≡ 2B̃(J + 1) (17)

and

B̃(cm−1) =
h

8π2Ic
(18)

Note that in the above conversions, we can think of Planck’s constant h (Joule · sec) as a means to
convert between energy in Joules and frequency in Hertz. We can similarly convert between Hertz
and wavenumbers using the speed of light, c.

Practice Problem 4: Sketch the microwave spectrum of the HCl molecule, given that it has a
rotational constant B = 10.6 cm−1.
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4 Beyond the Rigid Rotor

In reality, chemical bonds are not perfectly rigid. As the molecule spins more quickly, with larger
angular momentum at larger values of J , the bond distorts. In particular, the centrifugal force
pulls the atoms further apart and extends the bond at high J . If r increases, then the moment
of inertia I = µr2 increases, and the effective rotational constant B = ℏ2

2I will decrease at high J ,
causing the rotational states of a real molecule to be more closely spaced together as J increases.

This effect can be captured using a mathematical method called perturbation theory, and the
end result is that the energy levels of a nonrigid-rotor can be approximated with the addition of
higher-order terms in J :

EJ = B̃J(J + 1)− D̃J2(J + 1)2 (19)

where D̃ is called the centrifugal distortion constant, which corrects the energy levels for this effect.
It is typically much much smaller than B̃.

Practice Problem 5: Sketch the microwave spectrum of the HCl molecule, assuming that it is
subject to some centrifugal distortion.

5 The Rigid-Rotor-Harmonic-Oscillator (RR-HO) and Rovibra-
tional Transitions

We can treat the combined rotational and vibrational motion of a diatomic molecule by combin-
ing the rigid rotor and harmonic oscillator approximations. We can express the total rotational-
vibrational energy of a molecule within this approximation by simply taking the sum of the rota-
tional and vibrational energies, and labeling each state with both a vibrational quantum number,
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n, and a rotational quantum number J :

En,J(Joules) = (n+ 1
2)ℏω +BJ(J + 1) (20)

Ẽn,J(cm
−1) =

En,J

hc
= (n+ 1

2)ν̃ + B̃J(J + 1) (21)

ν̃ =
1

2πc

(
k

µ

)1/2

, B̃ =
h

8π2cI
(22)

The rotational spacing is much finer than the vibrational spacing, leading to a manifold of energy
levels that looks like:

Let’s now consider transitions between these rovibrational states. When we make an infrared
vibrational transition, it will be accompanied by a simultaneous change in rotational state. In the
case of our diatomic molecule, the selection rules are the same as they were for the rigid rotor and
harmonic oscillator separately.

For absorption of light, we have:

∆n = +1 (23)

∆J = ±1 (24)

The fact that J can increase or decrease by 1 during a rovibrational transition leads to two
“branches” of transitions:

R-branch: n → n+ 1, J → J + 1 “richer” (25)

P-branch: n → n+ 1, J → J − 1 “poorer” (26)

Let’s consider the energies of these transitions, where J always labels the lower state:

R-branch: Ẽn+1,J+1 − Ẽn,J = (n+ 1 + 1
2)ν̃ + B̃(J + 1)(J + 2) (27)

− (n+ 1
2)ν̃ − B̃J(J + 1) (28)

= ν̃ + 2B̃(J + 1), J = 0, 1, 2, . . . (29)

P-branch: Ẽn+1,J−1 − Ẽn,J = (n+ 1 + 1
2)ν̃ + B̃(J − 1)J (30)

− (n+ 1
2)ν̃ − B̃J(J + 1) (31)

= ν̃ − 2B̃J, J = 1, 2, 3, . . . (32)

We therefore find a manifold of evenly spaced rotational transitions clustered around the central
frequency of the “bare” vibrational transition at wavenumber ν̃.
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6 Beyond the Rigid-Rotor-Harmonic-Oscillator

While the RR-HO approximation of rovibrational structure we discussed above is a fairly good
model, of course we can always consider a more complete, accurate model.

One further step is the fact that rotations and vibrational motions interact with one another.
For instance, when a molecule is spinning rapidly with high J , we can imagine that its vibrational
motion is impacted by the centrifugal force. We can also imagine that when a molecule is highly
vibrationally excited, that may change its rotational energies and dynamics.

Let’s write down the RR-HO energy again:

Ẽn,J = (n+ 1
2)ν̃ + B̃J(J + 1) (33)

B̃ =
h

8π2cI
, I = µr2 (34)

In a vibrationally excited state, the amplitude of vibration is large, and the molecule effectively
spends more time at a longer bond length r. Therefore, the effective moment of inertia I is larger
in this vibrational state, and the rotational constant B̃ is effectively smaller. For a more careful
treatment, we can measure our effective rotational constants as a function of vibrational state n,
and label each vibrational-state-dependent rotational constant B̃n.

You might see the approximation made that B̃n decreases linearly for larger n, e.g.

B̃n = B̃e − α̃e(n+ 1
2) (35)

where B̃e is known as the equilibrium rotational constant for the ground vibrational state. The
constants B̃e and α̃e are fond by fitting the above expression to the positions of spectral lines in
the data.

All the other complications we’ve discussed already – anharmonicity, centrifugal distortion,
polyatomic molecules – can also be integrated into our description of rovibrational structure. We
have really only scratched the surface here, and could spend an entire semester talking about
molecular spectroscopy! But here is where we will stop in this course.
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