If the two lowest energy particle-in-a-box states are $\psi_{1}(x)$ and $\psi_{2}(x)$ with energies E_{1} and E_{2}, which of the following statements are correct?
I. $\Psi(x)=\frac{1}{\sqrt{2}}\left[\psi_{1}(x)+\psi_{2}(x)\right]$ is a possible wave function for the particle at time $t=0$.
II. $\Psi(x)=\frac{1}{\sqrt{2}}\left[\psi_{1}(x)+\psi_{2}(x)\right]$ satisfies the time-independent Schrödinger equation,

$$
\widehat{H} \Psi(x)=\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right] \Psi(\mathrm{x})=E \Psi(x)
$$

III. $\Psi(x, t)=\frac{1}{\sqrt{2}}\left[\psi_{1}(x) e^{\frac{-i E_{1} t}{\hbar}}+\psi_{2}(x) e^{\frac{-i E_{2} t}{\hbar}}\right]$ satisfies the full time-dependent SE :

$$
\widehat{H} \Psi(x, t)=i \hbar \frac{\partial \Psi(x, t)}{\partial t}
$$

A. I only
B. II only
C. III only
D. I and II
E. I and III

CHM 305 The Quantum World Lecture 5: The Rules of Quantum Mechanics (pt. 1)

Reading: McQuarrie Ch. 4

Last lecture we discussed...

Description of the simplest quantum system: the free particle in a potential with $\mathrm{V}(\mathrm{x})=0$

$$
\Psi_{k}(x, t)=\psi_{k}(x) \cdot e^{-i \omega t}=c_{k} e^{i(k x-\omega t)}
$$

Description of the next simplest quantum system: the particle in a box

- Stationary state wavefunctions \& energies for a 1D box
- Boxes of higher dimensions

$$
\begin{gathered}
\psi_{n}(x)=A \sin \left(\frac{n \pi x}{a}\right) \text { for } n=1,2, \ldots \\
E_{n}=\frac{k^{2} \hbar^{2}}{2 m}=\frac{\hbar^{2}}{2 m}\left(\frac{\pi n}{a}\right)^{2}
\end{gathered}
$$

Road map for today's lecture

$$
\hat{A} \psi_{n}(x)=a_{n} \psi_{n}(x)
$$

Discuss some rules about how quantum operators and their eigenfunctions behave:

Quantum operators

- are linear
- may or may not commute

Eigenfunctions of an operator

- are normalized
- are mutually orthogonal
- form a complete set

Practice problem \#1: Eigenvalue problems

Check if $\psi(x)=\sin (k x)$ is an eigenfunction of the following operators:

$$
\hat{A}=\frac{d}{d x} \quad \hat{B}=\frac{d^{2}}{d x^{2}}
$$

If you find it to be an eigenfunction, what is the eigenvalue?

Practice problem \#2: Commutation

Do the operators $\hat{A}=\frac{d}{d x}$ and $\hat{B}=x$ commute?
Hint: Evaluate $[\hat{A}, \hat{B}] \psi(x)=(\hat{A} \hat{B}-\hat{B} \hat{A}) \psi(x)$

Practice problem \#3: Normalizing functions

Normalize the wavefunction

$$
\psi(x)=c \cdot(1-x)
$$

over the interval $x=[0,1]$.
Hint: Solve for c assuming that

$$
\int_{0}^{1}|\psi(x)|^{2} d x=1
$$

Practice Problem \#4.1: Orthonormal basis sets

Normalize the set of functions $\psi_{n}(x)=N e^{i n x}$, over the window $0 \leq x \leq 2 \pi$. To do so, you will need to find the normalization constant N such that:

$$
\int_{0}^{2 \pi} \psi_{n}^{*}(x) \psi_{n}(x) d x=1
$$

where $\psi_{n}^{*}(x)$ is the complex conjugate of $\psi_{n}(x)$.

Practice Problem \#4.2: Orthonormal basis sets

Show that your normalized set of functions $\psi_{n}(x)=N e^{i n x}$ is orthonormal if n is an integer. To do so, you will need to show that the integral

$$
\int_{0}^{2 \pi} \psi_{m}^{*}(x) \psi_{n}(x) d x= \begin{cases}1 & \text { if } m=n \\ 0 & \text { if } m \neq n\end{cases}
$$

