
CHM 305 - Lecture 6 - The Rules of Quantum Mechanics (Part 2)

Prof. Marissa Weichman

Now that we have constructed a bit of a toolkit for how to work with quantum operators
and their eigenfunctions, we can finally start to lay out the Postulates – the governing rules of
quantum mechanics. Today we will work towards summarizing five Postulates. Today’s lecture
covers material in Chapter 4 of McQuarrie.

1 Postulate 1: Wavefunctions are probability distributions

The state of a quantum mechanical system is completely described by its wavefunction Ψ(r⃗, t),
which depends on spatial coordinates r⃗ = [x, y, z], time t, and sometimes other parameters (for
instance spin, s⃗).

The wavefunction encodes a probability distribution of where we expect to find the particle in
space at a given time. For a 1D wavefunction Ψ(x, t), the probability that the particle lies in the
window [x1, x2] can be expressed as:

P =

∫ x2

x1

Ψ∗(x, t)Ψ(x, t)dx =

∫ x2

x1

|Ψ(x, t)|2dx (1)

In order to be a valid wavefunction that we can use as a nice, well-behaved probability distri-
bution, we require:

� Ψ(x, t) is normalized with
∫∞
−∞ |Ψ(x, t)|2dx = 1. This ensures that the probability of finding

the particle somewhere is 100%.

� Ψ(x, t) is single-valued. Otherwise a particle would have multiple contradictory probabilities
for being found in the same region of space.

� Ψ(x, t) is continuous.

� Ψ(x, t) is smooth, meaning that ∂
∂xΨ(x, t) is continuous.

1.1 Example: PIB probabilities

Let’s consider the ground state of a 1D particle in a box of size a, which we know to be:

ψ1(x) =

√
2

a
sin

(πx
a

)
(2)

What’s the probability that we find the particle in the left half of the box, between x = 0 and
x = a/2? By inspection of the symmetry of |ψ1(x)|2, we can guess that the probability will be 1/2:
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Let’s confirm this suspicion mathematically. The probability that the particle lies in the window
x = [0, a2 ] is given by:

P [0,
a

2
] =

∫ a
2

0
|ψ1|2dx =

∫ a
2

0

[√
2

a
sin

(πx
a

)]2

dx =
2

a

∫ a
2

0
sin2

(πx
a

)
dx (3)

Let’s make use of the trigonometric integral:∫
sin2(αx) =

x

2
− sin(2αx)

4α
(4)

where we will take α = π
a . Therefore:

P [0,
a

2
] =

2

a

[
x

2
−

sin(2 · πax)
4π/a

]a/2
0

=
2

a

[
a

4
−

sin(2πa ·
a
2 )

4π/a
−

�
��
0

2
+
�

�
��sin(0)

4π/a

]
(5)

=
2

a

[
a

4
−
�
�
��sin(π)

4π/a

]
=

2

4
=

1

2
(6)

Note that solving for, e.g. the probability that the particle lies in the window x = [0, a4 ] would be
difficult to evaluate visually, and we’d have to use the integral method.

2 Postulate 2: Every observable has a corresponding operator

For every measurable property of a system, there is a corresponding quantum mechanical operator.
A lab experiment that measures a value for that observable is represented in quantum mechanics
by operating on the system’s wavefunction with the corresponding operator.

Recall these examples, some of which we have already discussed:

making a lab measurement ←→ applying a quantum operator

x ←→ x̂ x̂ ψ(x) ≡ xψ(x)
position position operator

px ←→ p̂x = −iℏ d
dx p̂x ψ(x) ≡ −iℏ ∂

∂xψ(x)
momentum momentum operator

Tx ←→ T̂x = − ℏ2
2m

∂2

∂x2

kinetic energy kinetic energy operator

E ←→ Ĥ = − ℏ2
2m

∂2

∂x2 + V (x)
energy Hamiltonian operator
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All quantum mechanical operators belong to a class called Hermitian operators. Importantly,
Hermitian operators have real eigenvalues. This capture the fact that physical objects can
never have complex or imaginary physical observables (positions, momenta, energies, etc.).

3 Postulate 3: A measurement reads out an eigenvalue

If we measure an observable that corresponds to the operator Â, then the result of that measurement
will always be one of the set of eigenvalues of Â, which we label {an}.

For example, if we measure the energy level of a hydrogen atom with an instrument in the lab
and read out some value en, we have just acted with the Hamiltonian energy operator on the atom’s
wavefunction and the value en that we have measured must be an eigenvalue of Ĥ. This makes
a certain amount of sense! We know that the hydrogen atom has discrete allowed energies, so we
expect to only be able to measure those discrete values. What might be a little surprising is that
the state of the system need not be an eigenfunction of Ĥ in order for us to measure the eigenvalue
en!

Let’s make this more concrete. Suppose we have a system with the following normalized wave-
function:

ϕ(x) = c1ψ1(x) + c2ψ2(x) (7)

where ψ1(x) and ψ2(x) are eigenfunctions of the Hamiltonian energy operator Ĥ with corresponding
energies e1 and e2. We can imagine that these are the two lowest energy states of the 1D particle
in a box, for instance. What values of energy will we observe experimentally when we make a
measurement Ĥϕ(x) on the system? What is the likelihood of measuring each energy value?

Let’s break this down:

� Let’s first note that if ψ1(x) and ψ2(x) are normalized, then for ϕ(x) to be normalized, we
must have |c1|2 + |c2|2 = 1. Therefore, |c1|2 and |c2|2 represent the relative weighting of the
eigenfunctions ψ1(x) and ψ2(x) in ϕ(x).

� Since our wavefunction consists of a linear combination of only the energy eigenfunctions
ψ1(x) and ψ2(x), we expect to only measure their two corresponding energy eigenvalues when
we make the measurement Ĥϕ(x). We will therefore either measure e1 or e2.

� The probability that we measure e1 or e2 being measured is given by the relative weighting of
the eigenfunctions ψ1(x) and ψ2(x) in ϕ(x). Therefore, we will measure e1 with probability
|c1|2 and e2 with probability |c2|2.

� The probability that we measure any other eigenvalue with index n ̸= 1, 2 (e.g. e3 . . . en) is
exactly zero, because the corresponding eigenfunctions do not contribute to our wavefunction.

For an evenly weighted superposition state

ϕ(x) =
1
√
2
ψ1(x) +

1
√
2
ψ2(x) (8)

we are equally likely to measure e1 or e2 when we apply the Hamiltonian operator to our wave-
function.
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In the most general case, if we have

ϕ(x) =
∞∑
n=1

cnψn(x) (9)

where the eigenvalue of ψn(x) is en, then the probability that we measure en when we take Ĥϕ(x)
is |cn|2.

Note again that ϕ(x) must be normalized, implying that
∑
|cn|2 = 1. This is convenient, as

our probability of measuring one of the values of en whose eigenfunction is represented in ϕ(x) is
100%.

Practice Problem 1: Consider the superposition state

ϕ(x) =

√
3

2
ψ1(x) +

i

2
ψ2(x) (10)

where ψn(x) is the eigenfunction of the Â operator with eigenvalue an.

� What are the possible values we would measure when applying Â to ϕ(x)?

� What are the probabilities of making each of those measurements?

4 Postulate 4: Expectation values

Say we have a system in the state ϕ(x), and we measure the observable A by applying the operator
Â. If we were to repeat this measurement many times, the average of our many measured values
of A, also known as the expectation value, is given by

⟨A⟩ =
∫ ∞

−∞
ϕ∗(x) Â ϕ(x) dx (11)

where ϕ(x) is normalized.
Let’s unpack this a bit. If ϕ(x) is an eigenfunction of Â, e.g. ϕ(x) = ψn(x) with Âψn(x) =

anψn(x), then we have:

⟨A⟩ =
∫ ∞

−∞
ψ∗
n(x) Â ψn(x)dx (12)

=

∫
ψ∗
n anψndx (13)

= an

∫
ψ∗
nψndx (14)

= an (15)

This what we should expect. When ϕ(x) is an eigenfunction, the expected value of the measurement
is simply the relevant eigenvalue.

What about when ϕ(x) is not an eigenfunction of Â? Let’s say that ϕ(x) is a linear combination
of ψ1(x) and ψ2(x), which are eigenfunctions of Â with eigenvalues of a1 and a2:

ϕ(x) = c1ψ1(x) + c2ψ2(x) (16)
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Then, we can calculate ⟨a⟩ as:

⟨A⟩ =
∫
ϕ∗(x) Â ϕ(x)dx (17)

=

∫ [
c∗1ψ

∗
1(x) + c∗2ψ

∗
2(x)

]
Â

[
c1ψ1(x) + c2ψ2(x)

]
dx (18)

=

∫ [
c∗1ψ

∗
1(x) + c∗2ψ

∗
2(x)

] [
a1c1ψ1(x) + a2c2ψ2(x)

]
dx (19)

Note that we always evaluate expressions like the ones above by applying the operator Â to the
wavefunction that follows it.

Because ψ1(x) and ψ2(x) are eigenfunctions of the same operator, we have learned they must be
orthogonal. Therefore their cross-terms in the expression above will vanish, and we are left with:

⟨A⟩ = a1c1c
∗
1
���

���*
1∫

ψ∗
1ψ1dx+ a2c2c

∗
2
���

���*
1∫

ψ∗
2ψ2dx (20)

= a1|c1|2 + a2|c2|2 (21)

Where we have also assumed that the ψn are normalized. The expected value ⟨A⟩ is therefore
an average of the two eigenvalues a1 and a2 weighted by the relative contributions of their two
corresponding eigenfunctions to ψ(x).

We can generalize this finding to say that if ϕ(x) is written as a full expansion of eigenfunctions:

ϕ(x) =
∑
n

cnψn(x) (22)

then we must have
⟨A⟩ =

∑
n

an|cn|2 (23)

assuming, again, that the set of {ψn(x)} are eigenfunctions of Â with eigenvalues {an}. In order
to evaluate the expectation value of a given operator, you must always start with expressing your
system in the basis of eigenstates of that operator!

Practice Problem 2: For the same superposition state from Practice Problem 1, given by

ϕ(x) =

√
3

2
ψ1(x) +

i

2
ψ2(x) (24)

What is the expected value of the energy you would get from averaging together many repeated
measurements with the Â operator?
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4.1 Calculating the expectation value of momentum

We can use this method of calculating expectation values to extract all kinds of interesting infor-
mation about quantum particles. For instance: what is the average value of momentum p for a 1D
particle in a box in its ground state? We know the momentum operator is:

p̂ = −iℏ d
dx

(25)

and ground state 1D PIB wavefunction is

ψ1(x) =

√
2

a
sin

(πx
a

)
(26)

therefore:

⟨p⟩ =
∫ a

0
ψ∗
1(x) · p̂ · ψ1(x)dx (27)

=

∫ a

0

√
2

a
sin

(πx
a

)
·
(
−iℏ d

dx

)
·
√

2

a
sin

(πx
a

)
(28)

= −iℏ · 2
a

∫ a

0
sin

(πx
a

) d

dx

[
sin

(πx
a

)]
dx (29)

= −iℏ · 2
a

∫ a

0
sin

(πx
a

)
· π
a
· cos

(πx
a

)
dx (30)

= −iℏ · 2π
a2

∫ a

0
sin

(πx
a

)
cos

(πx
a

)
dx (31)

We can make use of a trigonometric identity here: sin(αx) cos(αx) = 1
2 sin(2αx). So our integral

becomes: ∫ a

0

1

2
sin

(
2πx

a

)
dx (32)

=
1

2

[
− a

2π
cos

(
2πx

a

)]a
0

(33)

=− a

4π

[
cos

(
2πa

a

)
− cos(0)

]
(34)

=− a

4π
[cos (2π)− cos(0)] = 0 (35)

So ⟨p⟩ = 0 for our particle in a box ground state wavefunction! This turns out to be true for any
PIB wavefunction with any value of n. A way to rationalize this intuitively is that the particle’s
momentum averages out to zero because it’s equally likely to be moving towards the left or right
at any given moment, due to the symmetry of the system.
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5 Postulate 5: The Time-Dependent Schrodinger Equation

The evolution in time of a quantum wavefunction is determined by the time-dependent Schrödinger
equation. I will write it down once more here for posterity. The 1D time-dependent Schrödinger
equation takes the form:

ĤΨ(x, t) =

[
−ℏ2

2m

∂2

∂x2
+ V (x, t)

]
Ψ(x, t) = iℏ

∂Ψ(x, t)

∂t
(36)

5.1 Stationary states

If ψn(x) is a solution to the time-independent Schrödinger equation (e.g. a stationary state with
index n), then we can use separation of variables to solve Eqn. 36 and obtain a very simple time-
dependence (see the Lecture 3 notes if this doesn’t ring a bell):

Ψn(x, t) = C · ψn(x) · e−i(En/ℏ)t ≡ C · ψn(x) · e−iωnt (37)

where ωn ≡ En/ℏ.
What makes Ψ(x, t) a standing wave? In quantum mechanics, a standing wave has a probability

distribution that is not time dependent:

|Ψn(x, t)|2 = Ψ∗
n(x, t) ·Ψn(x, t) (38)

=

[
Cψn(x)e

−iωnt

]∗
·
[
Cψn(x)e

−iωnt

]
(39)

=

[
C∗ψ∗

n(x)e
+iωnt

]
·
[
Cψn(x)e

−iωnt

]
(40)

= |Cψn(x)|2 (41)

Which is indeed not a function of time, since the complex conjugate of the temporal component
cancels itself out.

5.2 Superposition states

What if we are not in a stationary state? There is a more interesting time-dependence of our
probability distribution in this case. Consider a superposition state

Φ(x, t) = c1ψ1(x)e
−iω1t + c2ψ2(x)e

−iω2t (42)

where ψ1(x) and ψ2(x) are energy eigenfunctions (or stationary states).
The probability density is given by:

|Φ(x, t)|2 = |c1ψ1(x)e
−iω1t + c2ψ2(x)e

−iω2t|2 (43)

=
[
c∗1ψ

∗
1(x)e

+iω1t + c∗2ψ
∗
2(x)e

+iω2t
] [
c1ψ1(x)e

−iω1t + c2ψ2(x)e
−iω2t

]
(44)

= |c1|2|ψ1(x)|2 + |c2|2|ψ2(x)|2 (45)

+ c∗1c2ψ
∗
1(x)ψ2(x)e

+i(ω1−ω2)t (46)

+ c1c
∗
2ψ1(x)ψ

∗
2(x)e

−i(ω1−ω2)t (47)
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Here our time-dependence does not cancel out neatly! The likelihood that we find the particle in
a given region of space changes over time. In fact, the probability distribution oscillates with a
frequency of ω1 − ω2 = (E1 − E2)/ℏ.

It’s a general phenomenon that superposition states have temporal dynamics that oscillate at
frequencies related to the energy differences between each pair of energy eigenstates present in the
superposition.

6 Some final rules of thumb

Here are a few handy take-aways from what we’ve learned in this lecture:

1. In general, the probability distribution |Ψ(x, t)| is time-independent if Ψ(x, t) is a stationary
state / energy eigenfunction.

2. In general, the probability distribution |Ψ(x, t)| will oscillate in time if Ψ(x, t) is a superpo-
sition of energy eigenfunctions.

3. In general, the expectation value of some observable ⟨A⟩ is time-independent if the state of
the system Ψ(x, t) is prepared in an eigenfunction of the Â operator.

4. In general, the expectation value of some observable ⟨A⟩ will oscillate in time if the state of
the system Ψ(x, t) is prepared in a superposition of eigenfunctions of the Â operator.

5. The expectation value of energy turns out to be special however. The expectation value
of the energy ⟨E⟩ is always time-independent, whether the system is prepared in an energy
eigenfunction or in a superposition of energy eigenfunctions.

The exercise is left to the reader to see why this is. Try evaluating ⟨E⟩ for the arbitrary
superposition state Φ(x, t) =

∑
n ψn(x)e

−iωnt, where ψn(t) are energy eigenfunctions and see
what happens.

Practice Problem 3: What is the expected value of the energy of the particle-in-a-box superpo-
sition state below?

Φ(x, t) =
1√
2
Ψ1(x, t) +

1√
2
Ψ2(x, t) (48)

=
1√
2

(
2

a

)1/2

sin
(πx
a

)
e−iE1t/ℏ +

1√
2

(
2

a

)1/2

sin

(
2πx

a

)
e−iE2t/ℏ (49)
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