
CHM 305 - Lecture 7 - Tunneling

Prof. Marissa Weichman

A few lectures ago we discussed the particle-in-a-box, where a quantum particle is confined in a
“box” with infinite potential walls. This lecture we will consider particles in potentials with finite
walls. A particle can tunnel underneath a barrier of finite height, even if doing so is classically
forbidden!

1 Particle in a finite box

Let’s first think about a variant of the particle in a box we discussed before: the particle in a finite
box. This particle sits in a potential defined by:

V (x) =

{
0 − a

2 ≤ x ≤ a
2

V0 elsewhere
(1)

Note that we have defined our x axis so that x = 0 is in the center of the box, for mathematical
convenience.

What will the eigenfunctions of this system look like for particles with energies E < V0? Our
strategy here will be to solve the time-independent Schrödinger equation in different regions of
space.

1.1 Inside the box

If our particle is inside the box, with −a
2 ≤ x ≤ a

2 , we have V (x) = 0 and the Schrödinger equation
is identical to that of the traditional particle in a box with infinitely high walls:

Ĥψi(x) = − ℏ2

2m

d2

dx2
ψi(x) = Eψi(x) (2)

→ d2ψi(x)

dx2
= −2mE

ℏ2
ψi(x) (3)
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We therefore expect to have the usual sinusoidal (or complex exponential) solutions inside the box:

ψi(x) = Aeikx +Be−ikx where k =

√
2mE

ℏ2
(4)

Note that because the walls are finite, we won’t have the same boundary conditions that we did
for the PIB. In other words, the wavefunction need not go to zero at the walls of the box when
x = ±a/2.

1.2 Outside the box, within the walls

Within the walls of the box, with x > |a2 |, we have E < V (x). With our classical intuition, we
might expect that the particle would never be found in this region. But what if we try to solve the
Schrödinger equation anyway?

Ĥψo(x) = − ℏ2

2m

d2

dx2
ψo(x) + V0ψo(x) = Eψo(x) (5)

→ d2ψo(x)

dx2
=

2m(V0 − E)

ℏ2
ψo(x) (6)

While Eqn. 6 looks very similar to Eqn. 3, it’s fundamentally different because V0 − E > 0. Our
solutions are therefore no longer sinusoids or complex exponentials. Instead, we need functions
that when differentiated twice give themselves multiplied by a positive coefficient.

The solutions outside the box will take the form:

ψo(x) =

{
Ceκx for −∞ ≤ x ≤ −a

2

De−κx for a
2 ≤ x ≤ ∞

(7)

where

κ =

√
2m(V0 − E)

ℏ2
(8)

These “outside-the-box” solutions decay exponentially into the “forbidden regions” in the walls
of the box. This is what we call tunneling : when a particle has some probability of being found
inside a classically forbidden region of the potential. We can think of 1/κ as the “decay length,”
e.g. the distance the particle must travel into the wall for the wavefunction to decay by a factor of
1/e.

1.3 Stitching the solutions together

In order to determine the coefficients A,B,C, and D that describe the amplitudes of the various
pieces of the wavefunction inside and outside the box, we would stitch together the wavefunction
at x = ±a/2 such that both ψ(x) and dψ

dx are continuous at the places where the potential takes a
sudden step:
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ψi(a/2) = ψo(a/2) → Aeika/2 +Be−ika/2 = De−κa/2 (9)

ψi(−a/2) = ψo(−a/2) → Ae−ika/2 +Beika/2 = Ce−κa/2 (10)[
dψi(x)

dx

]
x=a/2

=

[
dψo(x)

dx

]
x=a/2

→ ikAeika/2 − ikBe−ika/2 = −κDe−κa/2 (11)

[
dψi(x)

dx

]
x=−a/2

=

[
dψo(x)

dx

]
x=−a/2

→ ikAe−ika/2 − ikBeika/2 = κCe−κa/2 (12)

When solved, this system of equations (along with normalization requirements) will determine all
the coefficients. These boundary conditions will also constrain the allowed value of the particle’s
energy E, which gives rise to discrete states within the box (for E < V0). The number of discrete
states and their energies depend on the depth and width of the box.

This is as far as we will go here mathematically, but it is still useful to plot some solutions and
compare them to the original particle in a box.

Two useful observations upon comparing the PIB (left) and finite PIB (right):

� The nodal structure of the PIB is preserved in the discrete states of the finite PIB. The nth

state still has n− 1 nodes.

� The exponential tails of the finite PIB wavefunctoins decay more slowly as they get closer
to the top of the well. The reason for this becomes clear by inspecting our expression for
the decay constant κ =

√
2m(V0 − E)/ℏ, which gets smaller as E approaches V0. The decay

length 1/κ therefore increases as you approach the top of the barrier.

What might one expect the wavefunctions to look like for E > V0 ? They will be
unbound, meaning not spatially confined. The solutions for E > V0 are sinusoidal everywhere along
x and have continuously allowed energies. They are akin to free particle wavefunctions, but with the
particle experiencing slightly different momenta as it travels over the well – like hitting a pothole.

Note that we call the states with E < V0 bound states, as they are confined to the region of
space around the well, and ψ(x) → 0 as x→ ±∞.
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2 Traveling Waves and Barriers

2.1 A Finite Step

Let’s now consider a traveling quantum wave hitting a finite step in the potential. This will give
us a framework to start thinking about tunneling in the context of chemical reactivity.

The potential surface here will be described by:

V (x) =

{
0 x < 0

V0 x ≥ 0
(13)

Imagine a quantum particle coming in from the left with E = EKE . Classically, if E > V0,
the particle will continue on its way unimpeded with 100% probability, and if E < V0, it will be
reflected back the way it came with 100% probability.

The quantum mechanical result is different: the step potential will function as a partially
reflective “mirror.” A good analogy is to picture an ocean wave hitting a submerged sandbar: the
wave will be perturbed and break, even though the sandbar is well below the surface.

For E > V0, we can break the problem down into three pieces, as labeled in the figure below:

1. Incoming wave, x < 0: this is simply a free particle moving in from the negative x axis:

ψ1(x) = c1e
+ik1x, k1 =

√
2mE

ℏ2
(14)

2. Reflected wave, x < 0: part of the incoming wave is reflected back towards the negative x
axis:

ψ2(x) = c2e
−ik1x (15)

3. Transmitted wave, x ≥ 0: part of the incoming wave is transmitted over the potential step,
and behaves as a free particle with a different momentum, because the potential underneath
it has changed:

ψ3(x) = c3e
+ik2x, k2 =

√
2m(E − V0)

ℏ2
(16)
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As we did for the finite PIB, one can solve for the coefficients c1, c2, and c3 by requiring that
the total wavefunction and its first derivative be continuous at the potential step at x = 0:[

ψ1(x) + ψ2(x)

]
x=0

=

[
ψ3(x)

]
x=0

(17)

d

dx

[
ψ1(x) + ψ2(x)

]
x=0

=
d

dx

[
ψ3(x)

]
x=0

(18)

You will work through some of these results in this week’s problem set.
Practice problem: Qualitatively, what do you expect to happen for an incoming particle with

insufficient energy to surmount hte barrier? E < V0? Use what we learned about the finite PIB to
write down general expressions for the three pieces of the total wavefunction (incoming, reflected,
and transmitted waves). What are the relevant boundary conditions you would use to constrain
these general expressions?

2.2 A Finite Barrier

We are now approaching a model potential that is more relevant to chemical reactions. Consider
the “inversion” of the particle in a finite box: the finite barrier. This potential is described by

V (x) =

{
V0 0 ≤ x ≤ a

0 elsewhere
(19)

Again, we’ll think about a particle moving in from negative x. If the particle’s energy was
below the barrier, E < V0, classically we’d just expect such a particle to hit the barrier and bounce
back the way it came. You can’t throw a baseball through a wall – only over it! But a quantum
mechanical particle behaves differently. If the barrier is thin enough, or not too high, there is some
probability that the particle can tunnel its way through.

By this point, we can just sketch out what the wavefunction looks like in three regions of space:

1. Region 1, x < 0: Here we have the free particle coming in from the left, and its partial
reflection back the way it came, so we expect the wavefunction in this region to be:

ψ1(x) = Aeik1x +Be−ik1x, k1 =

√
2mE

ℏ2
(20)
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Note that we can think of the relative weighting of the reflected wave compared to the
forward-going incident wave |B|2/|A|2 as the reflection probability.

2. Region 2, 0 ≤ x ≤ a: Here we are inside the barrier, much like being inside the walls of the
particle in a finite box. We therefore expect an exponentially decaying wavefunction in this
region

ψ2(x) = Ce−κx, κ =

√
2m(V0 − E)

ℏ2
(21)

3. Region 3, x > a: Finally, we have tunneled through to the other side of the barrier, like
the quantum Shawshank Redemption. If a particle reached this region it would behave like
a free particle, the same as Region 1. In our system, the only particle present would have to
tunnel through the barrier to reach Region 3 from the left, so we expect the wavefunction to
look like:

ψ3(x) = Deikx (22)

where the amplitude D may be quite small, depending on what wavefunction amplitude has
managed to make it through the barrier.

Note that we can think of the relative weighting of the transmitted wave compared to the
forward-going incident wave |D|2/|A|2 as the transmission probability.

Just like the finite step problem, we could solve for the complete solution to this system by
mandating that ψ(x) and dψ

dx are continuous at both x = 0 and x = a.
We can just note a few things qualitatively here:

� We expect tunneling to be exponentially less likely as the barrier gets thicker or taller (e.g.
the amplitude of ψ3(x) will decrease)

� We expect tunneling to be more likely the higher the particles’ energy, as it comes in closer
to the top of the barrier. This is because the decay length 1/κ increases as E approaches V0.

3 Finite Barriers and Chemical Reactions

3.1 Electron Transfer

Let’s try to tie this idea of a particle tunneling through a finite barrier to chemistry. We first think
about electron tunneling. Imagine a long chain-like molecule with an electron donor moiety (D)
on one end and an acceptor moiety (A) on the other. Imagine that the molecular chain connecting
D and A is insulating, and therefore energetically unfavorable for the electron to be located in the
chain.

We might sketch a potential energy surface for this system that looks something like the image
below. The insulating molecular chain region acts as a barrier that the electron must tunnel
through. One way to think about this system is that you can initialize the particle’s wavefunction
as a finite PIB state in the donor well. We might want to find the probability that we tunnel
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through the barrier, which will depend on how much the tail of our initial wavefunction reaches
into the acceptor well.

Again, the tunneling rate will be highly dependent on the barrier height ∆V and width R. We
expect this rate to look something like:

rateQM ∼ exp(−κR) (23)

where κ =
√

2m(∆V−E)
ℏ2 should be becoming a familiar quantity! The tunneling rate therefore

decreases as we increase either ∆V (the barrier height) or R (the barrier width).

3.2 Quantum Tunneling of Atoms

We can also consider a simple chemical reaction whose reaction coordinate involves, for instance,
the motion of a proton. We have two different avenues for reaction: (a) the classical, thermally
activated Arrhenius reaction and (b) quantum tunneling through the reaction barrier.

Recall from general chemistry that thermally activated reaction rates are temperature-dependent
and can often be modeled with the Arrhenius equation:

krxn ∼ e−Ea/kBT (24)

where Ea is the barrier height, or activation energy.
The tunneling rate, on the other hand, is temperature-independent and depends only on the

shape of the potential surface, as given in Eqn. 23.
At high temperatures, the classical pathway is likely to dominate, but at very low temperatures,

quantum tunneling may be the only significant channel for chemistry to proceed.
Further inspection of Eqn. 23 also shows that the mass of the tunneling atom is very important.

A lighter atom is much more likely to tunnel through a given barrier than a heavier atom. For this
reason, H atoms are most commonly observed tunneling; D atoms are much less likely to tunnel.
This can be an important component of the kinetic isotope effect!
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