Consider the temporal dynamics of $\Psi(x, t)$ when we initialize the system at time t = 0 in the superposition state

$$\Psi(x,t=0) = \frac{1}{\sqrt{2}} \left[\psi_1(x) + \psi_2(x) \right]$$

where $\psi_1(x)$ and $\psi_2(x)$ are two eigenstates of the 1D particle in a box. Which of the following statements are correct? **Select all that apply.**

- (a) The probability distribution $|\Psi(x,t)|^2$ has time-dependent behavior
- (b) The expectation value for the position of the particle $\langle x \rangle = \int_{-\infty}^{\infty} dx \ \Psi^*(x,t) \cdot \hat{x} \cdot \Psi(x,t)$ has time-dependent behavior
- (c) The expectation value for the energy of the particle $\langle E \rangle = \int_{-\infty}^{\infty} dx \ \Psi^*(x,t) \cdot \hat{H} \cdot \Psi(x,t)$ has time-dependent behavior

CHM 305 The Quantum World Lecture 7: Quantum Tunneling

Last lecture we discussed...

The five Postulates of Quantum Mechanics

1. Wave functions represent probability distributions	$P = \int_{x_1}^{x_2} \Psi(x,t) ^2 dx$
2. Operators represent physical quantities, or observable	es $\begin{array}{c} x ightarrow \hat{x} \\ E ightarrow \hat{H} \end{array}$
3. Measurements with operators read out eigenvalues	$\hat{H} \sum_{n} c_n \psi_n(x) \rightarrow$ E_n with probability $ c_n ^2$
4. Expectation values of measurements	$\langle E \rangle = \int_{-\infty}^{\infty} \phi^*(x) \hat{H} \phi(x) dx$
5. The time-dependent SE $\hat{H}\Psi(x,t) = \left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \right]$	$V(x) \bigg] \Psi(x,t) = i\hbar \frac{\partial \Psi(x,t)}{\partial t}$

Road map for today's lecture

We will find wavefunction solutions for several problems involving potentials with *finite* walls

- Particle in a finite box
- Particle hitting a finite step
- Particle tunneling through a finite barrier
- How quantum tunneling can be important to chemical reactions

Practice Problem #1: Finite step potential

Qualitatively, what do you expect to happen for an incoming particle with $E < V_0$?

Use what we learned about the particle in a finite box to write down general expressions for the three pieces of the total wavefunction:

- 1. Incoming wave
- 2. Reflected wave
- 3. Transmitted wave

What are the relevant boundary conditions you would use to constrain these general expressions?

Practice Problem #2: A particle and a cliff

- Qualitatively, what do you expect to happen for a particle incoming from the left that hits a cliff where V(x) drops from 0 to -V₀?
- What would the wavefunctions look like in regions 1 and 2?
- What are the relevant boundary conditions?