
CHM 305 - Lecture 8 - Uncertainty

Prof. Marissa Weichman

Today we will discuss uncertainty in measurements made with quantum operators, and how we
can relate these uncertainties to whether quantum operators commute with one another.

1 A Review of Quantum Measurement

Let’s briefly review what we learned about quantum measurements when we discussed the postu-
lates. Applying a quantum operator represents making a measurement of some observable property
of the system. For instance, applying the Hamiltonian operator represents measuring the system’s
energy.

We have learned how to solve for the eigenvectors and eigenvalues of quantum operators. For
instance, by solving the time-independent Hamiltonian, we can find the stationary state wavefunc-
tions of the system, ψn(x), with eigenvalues En:

Ĥψn(x) = Enψn(x) (1)

If we make a measurement of the energy of the system by applying Ĥ, we know that the result of
that measurement will always be one of the energy eigenvalues En.

At this point, we should be reasonably convinced that if we have a particle in some arbitrary
time-dependent superposition wavefunction:

Ψ(x, t) =
∑
n

cn ψn(x) e
−iEnt/ℏ (2)

then a measurement of the energy will yield one of the values En with probability |cn|2.
Now let’s do a thought experiment:

� Suppose that we measure the energy of Ψ(x, t) at time t = 0 and obtain the value E3.

� Now suppose that we are able to measure the energy immediately after t = 0, say at t = δt,
where δt is vanishingly small.

� What value of the energy will we observe? Well, we just found the energy to be E3, and
unless we are willing to believe that the system can change its state infinitely rapidly, then
the state of the system is no longer given by the superposition state in Eqn. 2, but instead
has “collapsed” into a single eigenstate:

Ψ(x, t) → ψ3(x) e
−iE3t/ℏ (3)

This is a strange property of quantum mechanical systems: measurement can have a profound
effect on the state of the system. Keep this idea in mind as we now start to discuss the uncertainty
of quantum measurements.
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2 Tradeoffs in Certainty

Consider a free particle traveling wave moving to the right, with wavefunction

Ψ(x, t) = e+i(kx−ωt) (4)

At time t = 0, the real component of this wavefunction is a sinusoid extending along the x axis:

We know the momentum of this wave exactly, based on the form of this wavefunction, as de Broglie
tells us that p = h/λ = ℏk. But what is the “position” of this wave? This is a strange question,
because the wavefunction is completely delocalized along the x axis.

As written, this wavefunction is normalized over the finite interval 0 ≤ x ≤ 1. The probability
that we find the particle in a window of size dx near the point x = x0 is:

P (x0)dx = Ψ∗(x0, t)Ψ(x0, t)dx =������
e−i(kx0−ωt)

�����
ei(kx0−ωt)dx = dx (5)

which is independent of x0! It’s therefore equally likely that we find the particle anywhere in space.
On the other hand, let’s say we measure the particle’s position by applying the position operator

x̂ to Ψ(x, t). The result of our measurement will be an eigenvalue of the position operator, let’s
call this x0. By making this measurement, we collapse the particle’s wavefunction, and leave the
particle in an eigenfunction of the position operator which corresponds to the x0 eigenvalue.

What does an eigenfunction of the position operator with eigenvalue x0 look like? It’s a spatial
probability distribution where we know the particle’s position exactly. This turns out to look like
an arbitrarily narrow delta function in space:

Now we can ask a different question interesting: what is the momentum of this state? The moment
before we made our position measurement, our particle had momentum p = h/λ. Our new delta
function wavefunction does not have a well defined λ. Instead, the delta function can actually be
mathematically constructed as a superposition of infinitely many waves of different wavelengths.

By having measured the wavefunctions’s position and collapsed its wavefunction, we now have
complete uncertainty about its momentum!

It will turn out to be generally true that we cannot simultaneously measure a quantum particle’s
position and momentum. We will explore this further momentarily.
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3 Expectation Values and Standard Deviations

Let’s pin down mathematically what it means to “know” the position or momentum of a particle
by creating a metric for uncertainty. This material may be familiar if you have taken a course in
probability.

Recall that we can calculate the expected value of a measurement when we apply a quantum
operator Â to a wavefunction ψ(x) as:

⟨A⟩ =
∫ ∞

−∞
ψ∗(x) Â ψ(x)dx (6)

For the position operator x̂ = x we can therefore calculate the average position of the particle as:

⟨x⟩ =
∫ ∞

−∞
ψ∗(x) x̂ ψ(x) dx =

∫ ∞

−∞
ψ∗(x)xψ(x) dx =

∫ ∞

−∞
x |ψ(x)|2dx (7)

It might be helpful to think about |ψ(x)|2 here as a weighting or “mass” along the x axis. And the
average value ⟨x⟩ is the “center of mass” of the wavefunction:

Another important quantity is the “second moment” of the distribution:

⟨x2⟩ =
∫ ∞

−∞
ψ∗(x)x2 ψ(x)dx (8)

This quantity tells us something about the width of the distribution. In general, ⟨x⟩2 ̸= ⟨x2⟩, since
⟨x2⟩ is the average of a positive real number, while ⟨x⟩2 takes the square of an average over a real
number that might be positive or negative. Therefore, we expect ⟨x⟩2 < ⟨x2⟩.

We can define a more useful quantity, the variance:

σ2x =
〈
(x− ⟨x⟩)2

〉
(9)

and relatedly, the square root of the variance, which we call the standard deviation:

σx =
√〈

(x− ⟨x⟩)2
〉

(10)

σx represents a metric for how likely the system is to be found far away from its average value. If
ψ(x) is very delocalized, then x is likely to differ from ⟨x⟩, x− ⟨x⟩ will be large much of the time,
and σx will be correspondingly large.
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Let’s work with our expression for variance. First, let’s notice that since σ2x is the average value
of a squared real quantity, it must be > 0.

σ2x =
〈
(x− ⟨x⟩)2

〉
(11)

=
〈
x2 − 2x⟨x⟩+ ⟨x⟩2

〉
(12)

=

∫
ψ∗[x2 − 2x⟨x⟩+ ⟨x⟩2

]
ψ dx (13)

=

∫
ψ∗ x2 ψ dx −

∫
ψ∗ 2x⟨x⟩ψ dx +

∫
ψ∗ ⟨x⟩2 ψ dx (14)

Recall in this last expression that any quantity in brackets denoting an expected value is just a
number that can be factored out:

σ2x =

∫
ψ∗ x2 ψ dx − 2⟨x⟩

∫
ψ∗ xψ dx + ⟨x⟩2

∫
ψ∗ ψ dx (15)

= ⟨x2⟩ − 2⟨x⟩2 + ⟨x⟩2 (16)

→ σ2x = ⟨x2⟩ − ⟨x⟩2 > 0 (17)

The variance is going to be useful moving forward, and again serves as a metric for how broad
or narrow the probability distribution of our wavefunction is. And note: we have calculated the
variance here for the position operator x̂, but we could do the exact same thing with any quantum
operator and define

σ2A = ⟨A2⟩ − ⟨A⟩2 (18)

4 Heisenberg’s Uncertainty Principle

Heisenberg’s uncertainty principle relates the variances of two quantum operators to the value of
their commutator.

Recall our earlier discussion about commuting and non-commuting operators. We defined the
commutator of two operators as: [

Â, B̂
]
= ÂB̂ − B̂Â (19)

x̂ and p̂ are a great example of two operators which do not commute:[
x̂, p̂
]
ψ(x) = x̂p̂ψ(x)− p̂x̂ψ(x) (20)

= x ·
(
−iℏ d

dx

)
· ψ(x)−

(
−iℏ d

dx

)
· xψ(x) (21)

= −iℏx
dψ

dx
+ iℏx

dψ

dx
+ iℏψ(x) = iℏψ(x) (22)

→
[
x̂, p̂
]
= iℏ (23)
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Heisenberg showed that the value of the commutator is closely related to the relative uncer-
tainties in making measurements with the two operators. One can prove that for any two quantum
operators, Â and B̂, they must obey the uncertainty principle:

σ2Aσ
2
B ≥ −1

4

(∫
ψ∗ [Â, B̂]ψ dx)2

(24)

Where σ2Aσ
2
B represents the variances of making simultaneous measurements with Â and B̂. We

won’t prove this expression in class, but it can be derived mathematically using Schwartz’s inequal-
ity.

Let’s examine the consequences of the uncertainty principle using Â = x̂ and B̂ = p̂:

σ2xσ
2
p ≥ −1

4

(∫
ψ∗ [x̂, p̂]ψ dx)2

(25)

= −
1

4

(∫
ψ∗ (iℏ)ψ dx

)2

(26)

= −
1

4

(
iℏ
∫
ψ∗ ψ dx

)2

(27)

= −
1

4
(iℏ)2 = ℏ2/4 (28)

Or equivalently,

σxσp ≥ ℏ/2 (29)

You might also see this written as ∆x∆p ≥ ℏ/2. This expression describes the limits of our ability
to know x and p simultaneously. The better we know x, σx will trend towards 0, and our uncertainty
regarding p will increase accordingly.

5 Commuting Observables

One interesting consequence of the uncertainty principle is that if we have two operators which do
commute with one another, then

[Â, B̂] = 0 (30)

and accordingly
σAσB ≥ 0 (31)

which implies that if two operators commute, we can measure their observables to ar-
bitrary precision simultaneously . What is an example of two commuting operators? In two
dimensional space, position along the x axis, x̂, and momentum along the y axis, p̂y, commute:

[
x̂, p̂y

]
ψ(x, y) = x · −iℏ d

dy
ψ(x, y) + iℏ

d

dy
xψ(x, y) (32)

= iℏx

[
�
�
�

−
dψ

dy
+

�
�
�dψ

dy

]
= 0 (33)
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We can therefore measure the position and momentum along two independent axes to arbitrary
precision.

Another very important property of commuting operators is that the eigenfunctions
of one must be eigenfunctions of the other. Let’s say that the operators Â and B̂ commute
and have the following eigenfunctions and eigenvalues:

Âϕn = anϕn (34)

B̂ψn = bnψn (35)

and we are going to assume that we have no degeneracies, e.g. that each eigenvector of Â or B̂ has
a unique eigenvalue.

We therefore have [
Â, B̂

]
ϕn = ÂB̂ϕn − B̂Âϕn = 0 (36)

= Â
(
B̂ϕn

)
− B̂

(
anϕn

)
(37)

= Â
(
B̂ϕn

)
− an

(
B̂ϕn

)
= 0 (38)

(39)

Therefore

Â
(
B̂ϕn

)
= an

(
B̂ϕn

)
(40)

Which suggests that B̂ϕn is an eigenvector of Â with eigenvalue an. Because the eigenvalues of Â
are unique, the eigenvector B̂ϕn must be proportional to ϕn in order to result in the eigenvalue an.
Therefore

B̂ϕn = cϕn (41)

And we’ve proved that ϕn must also be an eigenfunction of B̂.

6 Wrapping Up

We have learned that measurement uncertainty is minimized when you prepare your wavefunction
in an eigenstate of the operator you are making a measurement with. In this case, you have
perfect certainty about what you’ll expect to measure – the corresponding eigenvalue. You can
only make perfect measurements of two separate observables if your state is an eigenfunction of
both observables. And we now know this is only the case if your two observables commute.

To finish, let’s quickly illustrate how our certainties get scrambled if two operators don’t com-
mute. Imagine we have two non-commuting operators with two separate sets of eigenstates, each
of which form a complete basis:

Âϕn = anϕn

B̂ψn = bnψn
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Because {ψn} and {ϕn} both form complete basis sets, we can express any one of these wave-
functions from either group in terms of the other:

ψn =
∑
m

cmn ϕm (42)

ϕn =
∑
m

dmn ψm (43)

where we would need to find appropriate cmn and dmn coefficients.
Now let’s think about what might happen if we make some measurements:

� Imagine we prepare the system in the ϕ1 eigenstate of Â. If we apply Âϕ1, we will measure
eigenvalue a1 with perfect certainty, and leave our system unchanged in the ϕ1 state.

� Now what happens if we take our ϕ1 system and make a measurement with B̂? We can
only measure eigenvalues of B̂, and to determine their probabilities we need to re-express our
wavefunction in terms of the eigenfunctions of B̂:

B̂ϕ1 = B̂
∑
m

dm1 ψm (44)

We will therefore measure the bn eigenvalue of B̂ with probability |dn1|2. In doing so, we
collapse the wavefunction and leave it in the ψn state. Note that there’s great uncertainty in
our measurement outcome now, because Â and B̂ do not commute and therefore do
not share eigenfunctions!

� What happens if we now return to study our system with Â, after completing our measurement
with B̂? To say anything sensible about our measurement with Â, we need to re-express our
wavefunction in terms of the eigenfunctions of Â:

Âψn = Â
∑
m

cmn ϕm (45)

We will therefore measure the an eigenvalue of Â with probability |dn1|2. In doing so, we
collapse the wavefunction and leave it in the ϕn state. Again, there’s significant uncertainty
here because our last measurement was made with a non-commuting operator.
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7 Bonus: A concrete example of the uncertainty principle

We can consider a fairly concrete example of the uncertainty principle for x̂ and p̂ in the case of
the 1D particle-in-a-box. Recall that our discrete PIB wavefunctions for a box of length a were

ψn(x) =

√
2

a
sin
(nπx
a

)
(46)

We will calculate the variances σ2x = ⟨x2⟩ − ⟨x⟩2 and σp = ⟨p2⟩ − ⟨p⟩2 by finding the relevant
expectation values. In an earlier problem set, you calculated that for all ψn(x):

⟨x⟩ =
a

2
→ ⟨x⟩2 =

a2

4
(47)

⟨p⟩ = 0 → ⟨p⟩2 = 0 (48)

These expectation values make sense. The wavefunction probabilty densities are symmetric about
the center of the potential, so we’d expect the average ⟨x⟩ to be squarely in the center of the box.
It’s also equally likely that the particle be traveling to the left or to the right inside the box, since
using Euler’s theorem, we can think of our wavefunctions as a sum of counterpropagating waves:

ψ(x) ∼ sin
(nπx
a

)
∼ eikx − e−ikx (49)

Let’s next tackle calculating ⟨x2⟩.

⟨x2⟩ =
∫ a

0
ψ∗
n(x)x

2 ψn(x) dx =
2

a

∫ a

0
x2 · sin2

(nπx
a

)
dx (50)

The solution for this integral is somewhat involved, so I will just give you the answer. The general
solution is: ∫

x2 sin2(αx)dx =
x3

6
−

(
x2

4α
−

1

8α3

)
sin(2αx)− x cos(2αx)

4α2
(51)

I encourage you to check my math, but if you use this formula to crunch the value of ⟨x2⟩, you will
find:

⟨x2⟩ = a2

3
− a2

2n2π2
(52)
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We can therefore calculate (again, the math is left to check by the reader)

σx =
√

⟨x2⟩ − ⟨x⟩2 = a

2πn

(
π2n2

3
− 2

)1/2

(53)

Calculating σp is a bit simpler:

⟨p2⟩ =
∫ a

0
ψ∗(x) p̂2 ψ(x)dx (54)

=

∫ a

0

√
2

a
sin
(nπx

a

)(
−iℏ d

dx

)2
√

2

a
sin
(nπx

a

)
(55)

=
2

a

∫ a

0
sin
(nπx

a

)
· ℏ2 ·

(nπx
a

)2
sin
(nπx

a

)
dx (56)

=
2

a
· ℏ2 ·

(nπ
a

)2 ∫ a

0
sin2

(nπx
a

)
dx (57)

=
2

a
· ℏ2

(nπ
a

)2
· a
2
=

(
nπℏ
a

)2

(58)

And therefore

σp =
√
⟨p2⟩ − ⟨p⟩2 =

√(
nπℏ
a

)2

− 0 =
nπℏ
a

(59)

And at long last, we can write down:

σxσp =

(
nπℏ
a

)( a

2πn

)(π2n2
3

− 2

)1/2

(60)

=
ℏ
2

(
π2n2

3
− 2

)1/2

(61)

≥ℏ/2 (62)
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