
Problem Set 2
CHM 305, Fall 2023

Distributed: Thursday, September 14, 2023
Due: Thursday, September 21, 2023 @ 5 PM ET

Problem Set Submission: Please submit assignment by uploading your files to Canvas. You
may upload scanned handwritten work or digital documents as .pdf files.

Collaboration: Students are encouraged to interact with one another and to collaborate in
learning and understanding the course material and homework problems. However, each student’s
assignments are expected to be their own work, reflecting their own understanding of the course
material.

1 1D Particle-in-a-Box

(a) We learned that the 1D particle-in-a-box wavefunctions take the form

ψn(x) = cn sin
(nπx

a

)
where the particle is confined along the x axis between 0 and a, and n = 1, 2, . . .

Normalize ψn(x). To do so, you will need to find the normalization constant cn such that:∫ a

0
ψ∗
n(x)ψn(x)dx = 1

where ψ∗
n(x) is the complex conjugate of ψn(x). An integral that might be useful to you is:∫

sin2(αx) dx =
x

2
− sin(2αx)

4α

(b) Show that the particle-in-a-box wavefunctions are orthogonal, e.g. that∫ a

0
ψ∗
n(x)ψm(x)dx = 0 for m ̸= n

You may want to use the trigonometric identity

sin(α) sin(β) =
1

2
cos(α− β)− 1

2
cos(α+ β)
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2 Particles in Boxes of Higher Dimension

A particle in a 3D box with side lengths of a, b, and c has the following eigenfunctions:

ψnx,ny ,nz(x, y, z) =

(
8

abc

)1/2

sin
(nxπx

a

)
sin

(nyπy
b

)
sin

(nzπz
c

)
with quantum numbers nx, ny, and nz which describe each eigenfunction’s structure along the x,
y, and z axes respectively.

(a) Show that these eigenfunctions are normalized over the 3D region contained by the box, for
x = [0, a], y = [0, b], z = [0, c]. You may use the trigonometric identities given in Problem 1.

(b) Show that these eigenfunctions are indeed a solution to the 3D time-independent
Schrödinger equation

Ĥψ(x, y, z) = − ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ(x, y, z) = Eψ(x, y, z)

and derive an expression for the energy of the system E in terms of the three quantum
numbers.

3 Real-World Particle in a Box

Calculate the energy levels of the π network in butadiene, C4H6, using the 1D particle in a box
model. To calculate the box length assume that the molecule is linear and use the values 135 and
154 pm for C=C and C–C bonds.

(a) Fill the resulting energy levels with the available π electrons, two electrons per level. What
are the values of n for the highest occupied and lowest unoccupied levels?

(b) What is the lowest-energy wavelength of light required to induce a transition from the
highest occupied level to the first empty level? How does this compare with the
experimentally observed value of 290 nm?

(c) Name at least three reasons that the particle-in-a-box may not be a perfect model for a real
molecule like butadiene.
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4 The Time-Dependent Schrödinger Equation

(a) We learned that if ψn(x) is a stationary state (e.g. a solution to the time-independent
Schrödinger equation) with energy En then its full time-dependent form can be written:

Ψ(x, t) = ψn(x)e
−iEnt/ℏ

Show that if ψm(x) and ψn(x) are both stationary states, then the state

Ψ(x, t) = cmψm(x)e−iEmt/ℏ + cnψn(x)e
−iEnt/ℏ

satisfies the time-dependent Schrödinger equation. E.g., show that

ĤΨ(x, t) = iℏ
∂

∂t
Ψ(x, t)

You may use the fact that Ĥψm(x) = Emψm(x) and Ĥψn(x) = Enψn(x).

(b) Does Ψ(x, t) given in part (a) satisfy the time-independent Schrödinger equation,
ĤΨ(x, t) = EΨ(x, t) ? Why or why not?

(c) Find the normalization constant C for

Ψ(x, t) = C
N∑

n=1

ψn(x)e
−iEnt/ℏ

if each ψn(x) is normalized.

5 Operators

(a) If two operators act on a wavefunction, as indicated by ÂB̂f(x), it is important to carry out
the operations in succession, with the first operation being that nearest to the function.
Evaluate the successive operations ÂB̂f(x) for the following values of Â, B̂, and f(x):

(i) Â =
d

dx
, B̂ = x2, f(x) = e−ikx

(ii) Â = x2, B̂ =
d

dx
, f(x) = e−ikx

Are your answers to parts (i) and (ii) different or identical? We will learn later on that
operators that do not commute (e.g. those that give different answers when their order is
swapped) will form the basis of Heisenberg’s uncertainty principle.

(b) In ordinary algebra, (P +Q)(P −Q) = P 2 −Q2. Expand (P̂ + Q̂)(P̂ − Q̂) using what we’ve
learned about how operators behave. Under what conditions do we find the same result as
the case of ordinary algebra?
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6 Eigenvalue Problems

(a) Operators can be expressed as matrices, and wave functions as column vectors. The
operator matrix

Ô =

(
α β
γ δ

)
acts on the wavefunction ψ =

(
a
b

)
according to the rule

Ôψ =

(
α β
γ δ

)(
a
b

)
=

(
αa+ βb
γa+ δb

)
The 2× 2 operator acting on the 2× 1 column vector wavefunction generates another 2× 1
wavefunction. If the wavefunction generated by Ôψ is the original wavefunction ψ
multiplied by a constant c, then ψ is an eigenvector of Ô, and x is the corresponding
eigenvalue. What is the effect of the operator

Ô =

(
0 1
1 0

)

on the column vectors

(
1
0

)
,

(
0
1

)
,

(
1
1

)
, and

(
−1
1

)
? Which of these are eigenfunctions of Ô,

and what are their eigenvalues?

(b) For each of the following, show that f(x) is an eigenvector of Â and find the eigenvalue.

(i) Â = d2

dx2 , f(x) = cos(kx)

(ii) Â = d
dt , f(x) = eiωt

(iii) Â = d2

dx2 + 2 d
dx + 3, f(x) = eαx

(iv) Â = ∂
∂y , f(x, y) = x2e6y
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