
Problem Set 5
CHM 305, Fall 2023

Distributed: Thursday, October 12, 2023
Due: Thursday, October 26, 2023 @ 5 PM ET

Problem Set Submission: Please submit assignment by uploading your files to Canvas. You
may upload scanned handwritten work or digital documents as .pdf files.

Collaboration: Students are encouraged to interact with one another and to collaborate in
learning and understanding the course material and homework problems. However, each student’s
assignments are expected to be their own work, reflecting their own understanding of the course
material.

1 The Rigid Rotor

(a) Consider the moment of inertia for a rigid rotor composed of two masses m1 and m2, which
lie at distances r1 and r2 from the center of mass, respectively:

Show that the moment of inertia I = m1r
2
1 +m2r

2
2 can be written equivalently as I = µr2

where r = r1 + r2 and µ is the reduced mass. Hint: Recall that by definition of the center
of mass, m1r1 = m2r2.

(b) Consider the three rigid rotor eigenfunctions with J = 1:

Y 0
1 (θ, ϕ) =

(
3

4π

)1/2

cos θ

Y 1
1 (θ, ϕ) = −

(
3

8π

)1/2

sin θ · eiϕ

Y −1
1 (θ, ϕ) =

(
3

8π

)1/2

sin θe−iϕ

Show that each of these three functions is a solution to the rigid rotor Hamiltonian

Ĥ = −ℏ2

2I

[
1

sin θ

∂

∂θ

[
sin θ

∂

∂θ

]
+

1

sin2 θ

∂2

∂ϕ2

]
and find the corresponding energy eigenvalue.
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2 The Hydrogen Atom

The ground state wavefunction of an electron bound in a hydrogen atom is expressed in spherical
coordinates as:

ψ100(r, θ, ϕ) =
1√
πa3

e−r/a

where r is the distance of the electron from the nucleus, and a ≡ 4πϵ0ℏ2
e2me

is the Bohr radius.

(a) ψ100(r, θ, ϕ) is a radially decaying function with no angular nodes. Sketch this wavefunction.
What is this state better known as? e.g. how would you have referred to this state in
general chemistry?

(b) Find the expected value of the electron-nucleus distance, ⟨r⟩ in the ψ100(r, θ, ϕ) state.

Note 1: To calculate expectation values here, you will need to perform an integral over all
3D space in spherical coordinates according to:

⟨Â⟩ =
∫ ∫ ∫

dV ψ∗(r, θ, ϕ) · Â · ψ(r, θ, ϕ)

=

∫ ∞

0
dr · r2

∫ π

0
sin θdθ

∫ 2π

0
dϕ ψ∗(r, θ, ϕ) · Â · ψ(r, θ, ϕ)

Note 2: You may use Wolfram Alpha to evaluate any sticky integrals. The following
integral identity may also come in handy:∫

xnecxdx = ecx
n∑

j=0

(−1)n−j · n!

j! cn−j+1
· xj

(c) What is the expected value of the electron’s position along the Cartesian x axis, ⟨x⟩, for the
ψ100(r, θ, ϕ) state?

Hint: You should not need to perform any integral here; you can instead make an
argument based on the symmetry of the wavefunction.

(d) What is the most probable value of the electron’s distance from the nucleus, r0, for the
ψ100(r, θ, ϕ) state?

Hint: r0 can be found by finding the value of r which maximizes the particle’s radial
probability distribution p(r), given by

p(r)dr = |ψ100(r, θ, ϕ)|2 · 4πr2 · dr

where 4πr2 · dr is the differential volume of a shell of radius r, akin to the differential
distance dr in a 1D system.
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3 A Particle on a Ring

The π-orbitals of an aromatic system like benzene, C6H6, may be crudely modeled using the
wavefunctions and energies of a “particle on a ring.” Here, we will treat the particle on a ring
problem, then extend it to describe the electronic structure of benzene.

Suppose that a particle of mass m is constrained to move on a circle of radius r in the x, y plane.
Assume that the particle’s potential energy is a constant independent of its position with
V (x, y) = 0.

(a) Write down the time-independent Schödinger equation in Cartesian coordinates (x, y) for
this system.

(b) We will now transform our system from Cartesian coordinates (x, y) into cylindrical
coordinates (r, θ), with

x = r · cos θ
y = r · sin θ

Write down the time-independent Schödinger equation in cylindrical coordinates for this
system. You will want to use the fact that:

∇2 =
∂2

∂x2
+

∂2

∂y2
=

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂ϕ2

Additionally, recall that we can treat r as a constant, since the particle is constrained to
move at a fixed radius.

(c) Find the general form of the solutions to this Schrödinger equation, ψ(θ).

(d) The boundary condition for this system is that the wavefunction must “wrap around,” so
we have ψ(θ) = ψ(θ + 2π) for all values of θ.

Apply this boundary condition to your general ψ(θ) solution from part (c) and solve for the
discrete energy eigenvalues that result.

Hint: You should find that En = n2ℏ2
2mr2

, n = 0,±1,±2, . . .

(e) Draw an energy diagram representing the first three energy levels of this system. Make sure
to note the degeneracy of each level correctly.

(f) Consider the six π electrons of a benzene molecule as particles moving on a ring of radius r.
Populate your energy diagram from part (e) with these electrons, making sure to obey the
Pauli principle (two electrons of opposite spin per orbital). Write down an expression for
the energy it would take to excite an electron from the highest occupied molecular orbital
(HOMO) to the lowest occupied molecular orbital (LUMO).
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4 Microwave Spectroscopy with Rigid Rotors

(a) In the far infrared spectrum of H79Br, there is a series of lines spaced by 16.72 cm−1.
Calculate the values of the moment of inertia and the internuclear separation in H79Br.

(b) The bond length of a 12C16O carbon monoxide molecule is 113 pm. What is the frequency of
its J = 0 to J = 1 rotational transition in Hz?

5 Infrared Spectroscopy with Harmonic Oscillators

(a) The force constant for a 1H19F molecule is 966 N/m. Calculate the frequency of light
needed to excite this molecule from the ground state (n = 0) to the first excited state
(n = 1) in Hertz. Calculate the zero point vibrational energy for this molecule in Joules.

(b) In the infrared spectrum of H79Br, there is an intense line at 2559 cm−1. Calculate the force
constant of H79Br and the period of vibration of H79Br.

6 Rovibrational Spectroscopy

(a) Consider a diatomic molecule with vibrational frequency ν and rotational constant B.

Use the rigid rotor-harmonic oscillator approximation to draw an energy-level diagram for
the first four rotational levels in the v = 0 and v = 1 vibrational states. Label the quantum
numbers and energy of each state. Indicate any allowed rovibrational transitions between
the states shown that would appear in a rotationally-resolved infrared absorption
experiment. Label whether each transition falls in the R or P branch.

(b) Given that B = 56 000MHz and ν̃ = 2143 cm−1 for the CO molecule, calculate the
transition frequencies in wavenumbers (cm−1) of the first two lines of each of the R and P
branches in the rovibrational spectrum of CO.

Note: Recall that units given in wavenumbers ν̃ ≡ 1/λ can be converted to frequency (ν)
and angular frequency (ω) according to:

ν =
ω

2π
=
c

λ
= c · ν̃
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