
CHM 502 - Classical & Quantum Light

Prof. Marissa Weichman

In all of our treatment of light-matter interactions thus far, we have considered light as a
classical monochromatic, oscillating electromagnetic field:

Ĥ ′(t) = µ⃗ · E⃗(t) (1)

E⃗(t) = E⃗ · cos(ωt+ η) (2)

One can of course extend this treatment to consider atomic or molecular systems interacting with
pulsed laser light:

E⃗(t) = E⃗ · cos(ωt+ η) · e−(t−t0)2/∆t2 (3)

or with multiple laser pulses

E⃗(t) = E⃗1 · cos(ω1t+ η1) · e−(t−t1)
2/∆t2 + E⃗2 · cos(ω2t+ η2) · e−(t−t2)

2/∆t2 (4)

Regardless, all of these cases treat the field of light classically.
I want to take this lecture to briefly introduce a quantum mechanical description of light, as

discrete photons populating particular optical modes. We’ll use this quantum optics picture to
revisit spontaneous emission, and also discuss the Jaynes-Cummings model of matter interacting
with quantum light.

1 Quantum light

It will turn out that we can describe photons, as quantized states of a harmonic oscillator Hamil-
tonian. Let’s first take a moment to recall the harmonic oscillator ladder formalism. Remember
that we motivate the ladder operators by trying to factor the Hamiltonian:

Ĥ =
p̂2

2m
+

1

2
mω2x2 = ℏω

[√mω

2ℏ
x̂− i√

2mℏω
p̂
]

︸ ︷︷ ︸
â†

·
[√mω

2ℏ
x̂+

i√
2mℏω

p̂
]

︸ ︷︷ ︸
â

+
1

2
ℏω (5)

≡ ℏω
[
â†â+

1

2

]
(6)

The trick here is that we will be able to write down a Hamiltonian for the quantum radiation
field that has this same form. It will look like a sum over the individual Hamiltonians of a basis of
harmonic oscillators:

Ĥrad =
∑
k⃗,λ

ℏω
k⃗,λ

[
â†
k⃗,λ
â
k⃗,λ

+
1

2

]
(7)

Let’s break down the components of this expression:
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� We are working in a basis of radiation “modes” here that are described by wavevector k⃗ and
polarization state λ. The way to think about these modes, is that we define a cubic region of
space with sides of length L, and volume V = L3. The wavevector k⃗ is discretized such that:

k⃗ = [kx, ky, kz] =

[
2πnx
L

,
2πny
L

,
2πnz
L

]
(8)

nx, ny, nz = 0,±1,±2, . . . (9)

Meanwhile, we take the polarization state label λ = 1, 2, since the polarization vector must
be perpendicular to k⃗, so for a given k⃗, the space of polarization states is spanned by a basis
of just two orthogonal polarizations.

� â†
k⃗,λ

and â
k⃗,λ

are the creation and annihilation operators, respectively, for a photon with

wavevector k⃗ and polarization state λ:

â†
k⃗,λ

|n
k⃗,λ

⟩ = (n
k⃗,λ

+ 1)1/2 |n
k⃗,λ

+ 1⟩ (10)

â
k⃗,λ

|n
k⃗,λ

⟩ = n
1/2

k⃗,λ
|n

k⃗,λ
− 1⟩ (11)

â†
k⃗,λ
â
k⃗,λ

|n
k⃗,λ

⟩ = n
k⃗,λ

|n
k⃗,λ

⟩ (12)

where we can think of â†
k⃗,λ
â
k⃗,λ

as the photon occupation number operator for the k⃗, λ mode.

� We label the quantum states of the radiation field by the photon occupation number of all
modes. These are also known as Fock states. We take each of these photon modes to be
independent of one another:

|nk1,λ1 , nk2,λ2 , . . . , nki,λi
, . . .⟩ = |nk1,λ1⟩ |nk2,λ2⟩ . . . |nki,λi

⟩ . . . (13)

It should make a certain intuitive sense that photons can be described as harmonic oscillator
levels, since we know that the harmonic oscillator has evenly spaced energy levels separated by ℏω.
Similarly, the addition of each photon of a given k⃗, λ will add a constant energy to the system,
ℏωk,λ.

Aside: We’ve just stated that Eqn. 7 is the Hamiltonian for quantized light without much
motivation. The connection to the harmonic oscillator Hamiltonian can be motivated starting
from Maxwell’s equations, but it takes a bit of time to work this out. There are many textbooks
that cover this topic: see Cohen-Tannoudji’s “Photons and Atoms: Introduction to Quantum
Electrodynamics,” Loudon’s “The Quantum Theory of Light,” or Keeling’s notes on “Light-
Matter Interactions and Quantum Optics.”

Here, we’ll just take a moment to try to motivate this connection at a very high level.
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Classically, the total energy of the electromagnetic field radiation field in our volume V is
given by

Erad =
1

2

∫
cav

dV

[
ϵ0|E⃗(r⃗, t)|2 + 1

µ0
|B⃗(r⃗, t)|2

]
(14)

This expression for energy is a sum of the squares of the electric and magnetic fields, just as
the harmonic oscillator Hamiltonian is a sum of squares of position and momentum. Position
and momentum have a special relationship as conjugate variables, which gives them a certain
commutation relation and makes them convenient to work with within the ladder operator
formalism. It turns out that the electric field and magnetic field have a similar relationship
as conjugate variables. The fact that the radiation Hamiltonian is written as a sum of their
squares is what enables us to draw a connection to harmonic oscillator Hamiltonian.

Again, to work with this, you expand the electromagnetic fields in terms of basis waves
labeled by k⃗, λ. In the end, you can write the expression for the electric field operator in terms
of raising and lowering operators (in the Coulomb gauge) as:

Ê(r⃗) = i
∑
k,λ

êk,λ

√
ℏωk,λ

2ϵ0V

[
âk,λe

ik⃗·r⃗ − â†k,λe
−ik⃗·r⃗

]
(15)

It also can be useful to talk about the vector potential operator Â, which is closely related to
the electric field, and can be written in terms of the ladder operators as:

Â(r⃗) =
∑
k,λ

êk,λ
ωk,λ

√
ℏωk,λ

2ϵ0V

[
âk,λe

ik⃗·r⃗ + â†k,λe
−ik⃗·r⃗

]
(16)

where êk,λ is the polarization unit vector for the field.

2 Quantum light interacting with matter

We’ve talked now about the Hamiltonian for the quantum field of radiation itself. How do we
treat the coupling of a quantum electromagnetic field to matter? There are several commonly used
ways to write down the light-matter interaction Hamiltonian, in various gauges and with various
approximations.
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The total energy of the system can be expressed as:

Ĥ = Ĥmol + Ĥrad + Ĥint (17)

where Ĥmol is the molecular Hamiltonian in the absence of the field. We also have already written
down that the radiation Hamiltonian is:

Ĥrad =
∑
k⃗,λ

ℏω
k⃗,λ

[
â†
k⃗,λ
â
k⃗,λ

+
1

2

]
(18)

And now we take the light-matter interaction term to be that of the minimal coupling quantum
electrodynamics (QED) Hamiltonian here, though we won’t derive it here:

Ĥint = −
∑
i

ei
mi
p̂i · Â(r⃗i) (19)

= −
∑
i

∑
k⃗,λ

ei
mi
p̂i ·

[
êk,λ
ωk,λ

√
ℏωk,λ

2ϵ0V

[
âk,λ�

��
eik⃗·r⃗ + â†k,λ�

��
e−ik⃗·r⃗

] ]
(20)

where i is a sum over all particles (nuclei and electrons) in the molecule, ei,mi, and p̂i are the charge,
mass, and momentum of the nth particle. Â(r⃗i) is the vector potential at its spatial location, r⃗i,
and we’ve swapped in its expression from Eqn. 16. We will take the long-wavelength approximation

and treat the field as spatially uniform on the length scale of a single molecule, dropping the e±ik⃗·r⃗

terms.
As we did in TDPT, we’ll use the eigenfunctions and eigenenergies of the uncoupled systems as

a reference, and look at how Ĥint drives transitions between the original eigenstates. For simplicity,
we’ll consider interactions with just one mode of radiation, k⃗, λ, and label the quantum states of
this total system as:

|Ψ⟩ = |ψmol⟩ |ψrad⟩ (21)

≡ |α⟩ |nk,λ⟩ (22)

where α is a quantum number that labels the molecular state, and nk,λ is the photon occupation
quantum number.

The energy of these eigenstates is given by

E = Emol + ℏωk,λnk,λ (23)

2.1 Absorption and emission of light

In a first example, let’s consider how we can drive transitions with quantum light within Fermi’s
Golden Rule:

Γf←i ∝
∣∣ ⟨f |Ĥint|i⟩

∣∣2 (24)

So let’s evaluate the ⟨f |Ĥint|i⟩ matrix element for a transition between states |α⟩ |n⟩ and |α′⟩ |n′⟩:

⟨α′| ⟨n′| Ĥint |α⟩ |n⟩ = −
∑
i

ei
miωk,λ

√
ℏωk,λ

2ϵ0V
⟨α′|p̂i · êk,λ|α⟩ ⟨n′|âk,λ + â†k,λ|n⟩ (25)
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Let’s consider the two inner products in this expression separately. The final radiation term is
straightforward to evaluate using what we know of ladder operators:

⟨n′|âk,λ + â†k,λ|n⟩ =
√
nδn′,n−1 +

√
n+ 1δn′,n+1 (26)

The light-matter interaction term ⟨α′|p̂i · êk,λ|α⟩ is more subtle to evaluate, but it turns out we can
manipulate it to look like the µ⃗ · E terms we are more familiar with. Consider first the following
commutator of the position of particle i with the total molecular Hamiltonian:

[Ĥmol, r̂i] =

[∑
i

p̂2i
2mi

+ V (r1, r2, . . . ), r̂i

]
(27)

r̂i should commute with all other r̂j and with p̂j ̸=i. Therefore:

[Ĥmol, r̂i] =

[
p̂2i
2mi

, r̂i

]
(28)

=
p̂i
2mi

[p̂i, r̂i] + [p̂i, r̂i]
p̂i
2mi

(29)

=
p̂i
2mi

· −(iℏ) + (−iℏ) · p̂i
2mi

= − iℏ
mi
p̂i (30)

→ p̂i =
imi

ℏ
[Ĥmol, r̂i] (31)

We can now return to our light-matter interaction term and evaluate the following:

−
∑
i

ei
mi

⟨α′|p̂i · êk,λ|α⟩ = −
∑
i

ei
mi

· imi

ℏ
⟨α′| [Ĥmol, r̂i] · êk,λ |α⟩ (32)

=
∑
i

ei
iℏ

[
⟨α′| Ĥmol · r̂i · êk,λ |α⟩ − ⟨α′| r̂i · êk,λ · Ĥmol |α⟩

]
(33)

=
∑
i

ei
iℏ

[
Eα′ ⟨α′| r̂i · êk,λ |α⟩ − Eα ⟨α′| r̂i · êk,λ |α⟩

]
(34)

=
(Eα′ − Eα)

iℏ
⟨α′|

∑
i

eir̂i · êk,λ |α⟩ (35)

=
(Eα′ − Eα)

iℏ
⟨α′| µ̂ · êk,λ |α⟩ (36)

≡ (Eα′ − Eα)

iℏ
µ̂α′α (37)

And just like that we’ve recovered our usual transition dipole matrix element. Returning to Eqn.
25, we can now write:

⟨α′| ⟨n′| Ĥint |α⟩ |n⟩ =
(Eα′ − Eα)

iℏωk,λ

√
ℏωk,λ

2ϵ0V
µ̂α′α

[√
n δn′,n−1 +

√
n+ 1 δn′,n+1

]
(38)

We can first consider the case of resonant absorption of one photon, taking n′ = n − 1 and
ℏωk,λ = Eα′ − Eα. Under these conditions we find

∣∣ ⟨α′| ⟨n′| Ĥint |α⟩ |n⟩
∣∣2 ∝ n ·

∣∣∣∣µ̂α′α ·

√
ℏωk,λ

2ϵ0V
êk,λ

∣∣∣∣2 (39)
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This rate is therefore linear in the quanta of photons, n in the relevant mode.
We can also look at the emission rate of one photon, taking n′ = n + 1 to account for the

creation of a new photon particle, finding:

∣∣ ⟨α′| ⟨n′| Ĥint |α⟩ |n⟩
∣∣2 ∝ (n+ 1) ·

∣∣∣∣µ̂α′α ·

√
ℏωk,λ

2ϵ0V
êk,λ

∣∣∣∣2 (40)

This looks much the same as the absorption rate, however note that even when the original state has
no photons present, n = 0, there is still a rate of photon emission. This is the spontaneous emission

rate. We can interpret the term
√

ℏωk,λ

2ϵ0V
as the intensity of the electric field of this “vacuum” state

of the quantum field, which is still able to couple to our molecule even with no photons present.

2.2 The Jaynes-Cummings model

So far we’ve made the assumption that interactions with the quantum field of light perturb the
populations of eigenstates of the bare molecular and radiation Hamiltonians. We can also consider
what happens when light-matter interactions are strong enough that they significantly change the
eigenstates and eigenenergies of the coupled system. Let’s briefly discuss the Jaynes-Cummings
model, a very simple model system describing the coupling of a two-level system to a single k⃗, λ
mode of the quantized radiation field Consider a two-level molecular system with states |g⟩ , |e⟩,
and two Fock states of the quantized radiation field, |0⟩ and |1⟩. We can combine these ket labels
to describe the coupled system:

0 excitations |g⟩ |0⟩ (41)

1 excitation |g⟩ |1⟩ , |e⟩ |0⟩ (42)

2 excitations |e⟩ |1⟩ , |g⟩ |2⟩ (43)

etc. (44)

Here, we are going to take the near-resonant case where the photon energy ℏωrad is close to the
energy gap of the two level-system ℏ [ωe − ωg] ≡ ℏωeg. In this case, the manifold of 1-excitation
states, |g, 1⟩ and |e, 0⟩ become near-degenerate.

The Hamiltonian for this system is easy to write down:

ĤJC = Ĥmol + Ĥrad + Ĥ ′ (45)

= ℏωg |g⟩ ⟨g|+ ℏωe |e⟩ ⟨e|+ ℏωrad

[
â†â+

1

2

]
+ Ĥ ′ (46)

=

[
ℏωg + ℏωrad 0

0 ℏωe

]
+ Ĥ ′ (47)
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Where in the last step we have written out the Hamiltonian in just the basis of 1-excitation states,
|g, 1⟩ and |e, 0⟩

The light-matter coupling perturbation Ĥ ′ is going to add off-diagonal terms and mix these
states together. The strength of this coupling is often labeled g, which comes from the usual
interaction of the molecular transition dipole with the field:

⟨g, 1| Ĥ ′ |e, 0⟩ = ⟨e, 0| Ĥ ′ |g, 1⟩ = ℏg (48)

ℏg = µ⃗eg · E⃗ = µ⃗eg · ê ·
√

ℏωrad

2ϵ0V
(49)

where ê is the unit vector describing the polarization of the field, while
√

ℏωrad
2ϵ0V

is the vacuum field

strength, pulled more or less exactly from Eqn. 38.

Aside: The close observer will note that this perturbation should actually be time-dependent
and oscillate at the radiation mode frequency. A full derivation uses the rotating wave approx-
imation to get rid of this time-dependence. See the nice review paper on this topic by Törmä
and Barnes if you are curious how this is done.

In any event, Ĥ ′ is usually written as:

Ĥ ′ = ℏg
[
σ̂†â+ σ̂â†

]
(50)

σ̂† |g⟩ = |e⟩ ; â† |0⟩ = |1⟩ (51)

σ̂ |e⟩ = |g⟩ ; â |1⟩ = |0⟩ (52)

where we use our photon ladder operators again, while transitions from ground to excited state
and vice versa are provided by the matrices

σ† =

[
0 1
0 0

]
; σ =

[
0 0
1 0

]
(53)

And so, finally, one can write

ĤJC =

[
ℏωg + ℏωrad ℏg

ℏg ℏωe

]
(54)
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One can diagonalize this system to find its new eigenvectors and energy eigenvalues, exactly the
same as we did for statically perturbed two-level systems:

E± =
1

2
[ℏωg + ℏωe] + ℏωrad ±

1

2

√
[∆E − ℏωrad]

2 +Ω2 (55)

∆E ≡ ℏωe − ℏωg (56)

Ω = 2ℏg (57)

The splitting between these states is given by
√

[∆E − ℏωrad]
2 +Ω2, which is simply equal to Ω

when the light-matter detuning is zero.
The new eigenvectors of the system are:

|+⟩ = cosΘ |e, 0⟩+ sinΘ |g, 1⟩ (58)

|−⟩ = − sinΘ |e, 0⟩+ cosΘ |g, 1⟩ (59)

Θ ≡ 1

2
tan−1

[
2ℏg

ℏωrad −∆E

]
(60)

where Θ is the mixing angle. Again, when when the light-matter detuning is zero, the situation
simplifies, and sinΘ = cosΘ = 1/

√
2. These new, mixed light-matter states are often referred to

as “polaritons” when the system is on resonance:
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