
CHM 502 - Module 5 - Time-Independent Perturbation Theory

Prof. Marissa Weichman

Many important problems in quantum mechanics cannot be solved exactly. In these cases, per-
turbation theory (PT) is an important tool. To capture light-matter interactions and spectroscopy,
we will ultimately use time-dependent perturbation theory, but we will first build up our math-
ematical formalism using time-independent perturbation theory. Time-independent perturbation
theory comes in two flavors: non-degenerate (when all the eigenvalues are distinct) and degenerate
(when some eigenvalues may be identical).

1 Non-degenerate perturbation theory

1.1 Laying out the problem

Imagine that we have a reference Hamiltonian Ĥ(0), where we have already solved the time-

independent Schrödinger equation to find its energy eigenvectors {|ψ(0)
j ⟩} and eigenvalues {E(0)

j }.
We will call these the “zeroth-order” solutions.

We then consider slightly perturbing our Hamiltonian:

Ĥ = Ĥ(0) + λĤ(1) (1)

where Ĥ(1) is a “small” perturbation. The λ coefficient is just there for bookkeeping purposes, as
we will see shortly. The idea here is that the solutions to Ĥ, which we will call {|ψj⟩} and {Ej}
will not be too different from the solutions to our known reference system.

The scale for what is considered small is typically the energy level separations of Ĥ(0). Some
examples of problems that can be treated within a small perturbation picture include L ·S coupling
in light atoms, anharmonic oscillators, and the static Stark and Zeeman effects.
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Our goal here is to understand how this new perturbed system behaves by finding the unknown

{|ψj⟩} and {Ej} solutions in terms of known quantities, including our {|ψ(0)
j ⟩} and {E(0)

j } solutions.

We will do this by first defining power series expansions for the solutions to Ĥ in powers of λ:

Ĥ |ψj(λ)⟩ = Ej(λ) |ψj(λ)⟩ (2)

Ej(λ) = E
(0)
j + λE

(1)
j +

1

2
λ2E

(2)
j + · · · (3)

|ψj(λ)⟩ = |ψ(0)
j ⟩+ λ |ψ(1)

j ⟩+ 1

2
λ2 |ψ(2)

j ⟩+ · · · (4)

where E
(1)
j , E

(2)
j , . . . and |ψ(1)

j ⟩ , |ψ(2)
j ⟩ , . . . are expansion coefficients to be determined in terms

of known quantities: our reference Hamiltonian Ĥ(0), the perturbation Ĥ(1), and our reference

eigenvectors and eigenvalues E
(0)
j and |ψ(0)

j ⟩.
For first-order PT, we can truncate these series at the first power of λ, for second-order PT, we

keep terms up to λ2, etc.

Here is a roadmap (and cheat sheet!) for how we will find the expansion coefficients:

1. Plug in our expansions for |ψj(λ)⟩ and Ej(λ) into the time-independent Schrödinger equation:

Ĥ(λ) |ψj(λ)⟩ = Ej(λ) |ψj(λ)⟩ (5)

2. Group terms of Eqn. 5 by powers of λ.

3. Left-project our first-order expression from the previous step with a reference bra ⟨ψ(0)
j | and

simplify.

4. Rearrange to find

E
(1)
j = ⟨ψ(0)

j |Ĥ(1)|ψ(0)
j ⟩ (6)

5. Plug expression for E
(1)
j from previous step into first-order expression and solve for |ψ(1)

j ⟩ =∑
k c

(1)
kj |ψ(0)

k ⟩, while ensuring that the wavefunctions are normalized. It will turn out that

c
(1)
kj =

Ĥ
(1)
kj

E
(0)
j − E

(0)
k

(7)

6. Then turn to the second-order expression from Eqn. 5 and recursively find the second-order
expansion coefficients in terms of the zeroth-order and first-order solutions. For instance, you
will find

E
(2)
j =

∑
k ̸=j

Ĥ
(1)
jk · Ĥ(1)

kj

E
(0)
j − E

(0)
k

(8)
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1.2 Grouping terms in the Schrödinger equation by λ

We begin by substituting Eqns. 3 and 4 above into the time-independent Schrödinger equation:

Ĥ|ψj(λ)⟩ = Ej(λ)|ψj(λ)⟩ (9)

RHS:
(
Ĥ(0) + λĤ(1)

)(
|ψ(0)

j ⟩+ λ|ψ(1)
j ⟩+ 1

2
λ2|ψ(2)

j ⟩+ · · ·
)

(10)

LHS:

(
E

(0)
j + λE

(1)
j +

1

2
λ2E

(2)
j + · · ·

)(
|ψ(0)

j ⟩+ λ|ψ(1)
j ⟩+ 1

2
λ2|ψ(2)

j ⟩+ · · ·
)

(11)

The above expression can only hold true for arbitrary values of λ if the coefficients of each power
of λ are equivalent on both right and left hand sides. So, grouping in powers of λ:

λ0 : Ĥ(0)|ψ(0)
j ⟩ = E

(0)
j |ψ(0)

j ⟩ our solved reference problem (12)

λ1 : Ĥ(0)|ψ(1)
j ⟩+ Ĥ(1)|ψ(0)

j ⟩ = E
(0)
j |ψ(1)

j ⟩+ E
(1)
j |ψ(0)

j ⟩ (13)

λ2 : Ĥ(1)|ψ(1)
j ⟩+ 1

2
Ĥ(0)|ψ(2)

j ⟩ = 1

2
E

(2)
j |ψ(0)

j ⟩+ E
(1)
j |ψ(1)

j ⟩+ 1

2
E

(0)
j |ψ(2)

j ⟩ (14)

· · ·

It’s clear that this is a recursive problem. We can find the first-order quantities E
(1)
j and |ψ(1)

j ⟩ in
terms of the known zeroth-order eigenvalues and eigenfunctions. The second-order quantities can
be expressed in terms of known zeroth- and first-order quantities, etc.

1.3 First-order corrections to the energy eigenvalues

We can consider just the first-order quantities by projecting our first-order expression in Eqn. 13

with ⟨ψ(0)
j | from the left:

⟨ψ(0)
j |Ĥ(0)|ψ(1)

j ⟩+ ⟨ψ(0)
j |Ĥ(1)|ψ(0)

j ⟩ = ⟨ψ(0)
j |E(0)

j |ψ(1)
j ⟩+ ⟨ψ(0)

j |E(1)
j |ψ(0)

j ⟩ (15)

=
��������
E

(0)
j ⟨ψ(0)

j |ψ(1)
j ⟩+ ⟨ψ(0)

j |Ĥ(1)|ψ(0)
j ⟩ =

��������
E

(0)
j ⟨ψ(0)

j |ψ(1)
j ⟩+ E

(1)
j ⟨ψ(0)

j |ψ(0)
j ⟩ (16)

→ E
(1)
j = ⟨ψ(0)

j |Ĥ(1)|ψ(0)
j ⟩ (17)

Note the identical terms which we cancel on the left and right-hand sides.

The diagonal elements of Ĥ(1) therefore give us the first-order corrections to the energy E
(1)
j .

To solve this problem to first order, there is no need to diagonalize Ĥ(1)!

Aside: To give a concrete example, say we have a 1D harmonic oscillator (HO) with Ĥ(0) =
K̂E + 1

2kx
2. We might consider the quartic oscillator as a perturbation, with Ĥ(1) = λcx4.

Provided λ is small, we expect that the jth new energy level will diverge from the original jth

HO energy level by ∼ E
(1)
j = λc⟨ψ(0)

j |x4|ψ(0)
j ⟩.
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1.4 First-order corrections to the energy eigenfunctions

We now consider |ψ(1)
j ⟩, the first-order corrections to our eigenfunctions. Let’s return to our λ1

expression in Eqn. 13. Since we have now found E
(1)
j , we only have one remaining unknown:

Ĥ(0) |ψ(1)
j ⟩+ Ĥ(1) |ψ(0)

j ⟩ = E
(0)
j |ψ(1)

j ⟩+ E
(1)
j |ψ(0)

j ⟩ (18)

|ψ(1)
j ⟩ can be expressed as an expansion of our zeroth-order wavefunctions (which form a com-

plete, orthonormal basis set):

|ψ(1)
j ⟩ =

∑
k

c
(1)
kj |ψ

(0)
k ⟩ (19)

Aside: Before we go further, it’s useful to require that our wavefunction remain normalized:

⟨ψj(λ)|ψj(λ)⟩ = 1 (20)

where |ψj(λ)⟩ = |ψ(0)
j ⟩+ λ|ψ(1)

j ⟩+ 1

2
λ2|ψ(2)

j ⟩+ · · · (21)

This implies[
⟨ψ(0)

j |+ λ⟨ψ(1)
j |+ 1

2
λ2⟨ψ(2)

j |+ · · ·
] [

|ψ(0)
j ⟩+ λ|ψ(1)

j ⟩+ 1

2
λ2|ψ(2)

j ⟩+ · · ·
]
= 1 (22)

Let’s use our trusty trick of grouping by powers of λ. We know that all coefficients multiplying
factors of λ must go to zero if we want Eqn. 22 to evaluate to 1 for arbitrary λ:

λ0 : ⟨ψ(0)
j |ψ(0)

j ⟩ = 1 (23)

λ1 : ⟨ψ(0)
j |ψ(1)

j ⟩+ ⟨ψ(1)
j |ψ(0)

j ⟩ = 0 (24)

λ2 :
1

2
⟨ψ(0)

j |ψ(2)
j ⟩+ 1

2
⟨ψ(2)

j |ψ(0)
j ⟩+ ⟨ψ(1)

j |ψ(1)
0 ⟩ = 0 (25)

Note that in the λ1 expression, if the ⟨ψ(0)
0 |ψ(1)

0 ⟩ product is real, |ψ(0)
0 ⟩ and |ψ(1)

0 ⟩ must be

orthogonal. Without loss of generality, we can choose ⟨ψ(0)
0 |ψ(1)

0 ⟩ to be real, and therefore take

c
(1)
kk = 0. In other words, |ψ(1)

j ⟩ has no contribution from the zeroth-order eigenfunction with
the same index j:

|ψ(1)
j ⟩ =

∑
k ̸=j

c
(1)
kj |ψ

(0)
k ⟩ (26)

Making this choice ensures our wavefunction is normalized, at least to first order.
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The other c
(1)
kj coefficients can be found by projecting Eqn. 18 with ⟨ψ(0)

k |:

⟨ψ(0)
k | Ĥ(0) |ψ(1)

j ⟩+ ⟨ψ(0)
k | Ĥ(1) |ψ(0)

j ⟩ = ⟨ψ(0)
k |E(0)

j | |ψ(1)
j ⟩+ ⟨ψ(0)

k |E(1)
j |ψ(0)

j ⟩ (27)

⟨ψ(0)
k | Ĥ(0)

∑
m ̸=j

c
(1)
mj |ψ

(0)
m ⟩+ ⟨ψ(0)

k |Ĥ(1)|ψ(0)
j ⟩ = ⟨ψ(0)

k |E(0)
j |

∑
m ̸=j

c
(1)
mj |ψ

(0)
m ⟩+ ⟨ψ(0)

k |E(1)
j |ψ(0)

j ⟩ (28)

=
∑
m̸=j

c
(1)
mj��������:δkmE

(0)
k

⟨ψ(0)
k |Ĥ(0)|ψ(0)

m ⟩+ Ĥ
(1)
kj = E

(0)
j

∑
m̸=j

c
(1)
mj⟨�����:δkm

ψ
(0)
k |ψ(0)

m ⟩+ E
(1)
j ������:0

⟨ψ(0)
k |ψ(0)

j ⟩ (29)

= c
(1)
kj E

(0)
k + Ĥ

(1)
kj = E

(0)
j c

(1)
kj (30)

→ c
(1)
kj =

Ĥ
(1)
kj

E
(0)
j − E

(0)
k

(31)

And thus we have found the kth expansion coefficient of |ψ(1)
j ⟩ =

∑
k c

(1)
kj |ψ(0)

k ⟩.

1.5 Second-order quantities

It’s not much more work to find the second-order correction to the energy eigenvalues, E
(2)
j . This

time we will take our λ2 expression in Eqn. 14 and project with ⟨ψ(0)
j |:

⟨ψ(0)
j |Ĥ(1)|ψ(1)

j ⟩+ 1

2
⟨ψ(0)

j |Ĥ(0)|ψ(2)
j ⟩ =

E
(2)
j

2
⟨ψ(0)

j |ψ(0)
j ⟩+ E

(1)
j ������:0

⟨ψ(0)
j |ψ(1)

j ⟩+
E

(0)
j

2
⟨ψ(0)

j |ψ(2)
j ⟩ (32)

= ⟨ψ(0)
j |Ĥ(1)|ψ(1)

j ⟩+��������E
(0)
j

2
⟨ψ(0)

j |ψ(2)
j ⟩ =

E
(2)
j

2
+��������E

(0)
j

2
⟨ψ(0)

j |ψ(2)
j ⟩ (33)

→ E
(2)
j = ⟨ψ(0)

j |Ĥ(1)|ψ(1)
j ⟩ (34)

Since the second-order correction to the energy involves the first-order correction to the ground
state wavefunction, our solution will depend on all zeroth-order energies:

1

2
λ2E

(2)
j = λ2⟨ψ(0)

j |Ĥ(1)|ψ(1)
j ⟩ (35)

= λ2
∑
k ̸=j

c
(1)
kj ⟨ψ

(0)
j |Ĥ(1)|ψ(0)

j ⟩ (36)

= λ2
∑
k ̸=j

c
(1)
kj Ĥ

(1)
jk (37)

= λ2
∑
k ̸=j

Ĥ
(1)
jk · Ĥ(1)

kj

E
(0)
j − E

(0)
k

(38)
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1.6 Example: A molecule in a static electric field

Let’s apply what we’ve derived to the example of a molecule in a static electric field. The perturbed
Hamiltonian is given by:

Ĥ = Ĥ(0) + ξ · µ̂ (39)

where Ĥ(0) is the bare molecular Hamiltonian, ξ is the applied static electric field, and µ̂ is the
molecular dipole operator given by

µ̂ =
∑
i

qi · r̂i (40)

which describes the spatial distribution of charges in the molecule. Note that here we use hats to
represent quantum operators and underlined quantities to represent vectors.

The first order response of the ground state energy to the field is simply:

E
(1)
0 = ⟨ψ(0)

0 |ξ · µ̂|ψ(0)
0 ⟩ = ξ · ⟨ψ(0)

0 µ̂
0
|ψ(0)

0 ⟩ ≡ ξ · ⟨µ̂
0
⟩ (41)

where ⟨µ̂
0
⟩ is the permanent dipole moment of the molecule in its ground state. This is the first-

order Stark shift!
The second order response to the field is

E
(2)
0 = ξ ·

(∑
k>0 µ0k · µk0
E

(0)
0 − E

(0)
k

)
· ξ ≡ ξ · α · ξ (42)

where α is the polarizeability tensor and α · ξ represents an induced dipole moment.
The magnitude of the induced dipole moment depends on (i) whether the molecule has low-lying

excited states, which provide small denominators in Eqn. 42, and (ii) the strength of the dipole
matrix elements. This second-order behavior is known as the quadratic Stark effect.

2 Degenerate perturbation theory

Above, we examined how perturbation theory may be used to derive first and second-order cor-
rections to the solutions of the zeroth-order Hamiltonian assuming that the eigenfunctions of Ĥ(0)

are unique. However, for many systems, degenerate eigenstates abound. Consider the angular
momentum eigenstates of the rigid rotor for instance, which feature degeneracies of 2J + 1, where
J is the angular momentum quantum number. Non-degenerate PT cannot be applied in this case
– one needs to do things slightly differently.

Consider a system in which the ground state of the Ĥ(0) reference Hamiltonian is q-fold degen-
erate. If the perturbing term λĤ(1) completely lifts this degeneracy then there will be q distinct
energy levels. The goal of perturbation theory is to calculate these new energies and the altered
wavefunctions associated with the now distinct energy eigenvalues. As before, we can expand the
first-order correction to the jth eigenstate in terms of the zeroth-order eigenstates:

|ψ(1)
j ⟩ =

∑
k

c
(1)
kj |ψ(0)

k ⟩ with c
(1)
kj =

Ĥ
(1)
kj

E
(0)
j − E

(0)
k

(43)
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If the ground state is q-fold degenerate, then

E
(0)
1 = E

(0)
2 = · · · = E(0)

q (44)

and the {c(1)kj } are will explode for j, k ≤ q as the denominator goes to 0.
How do we get out of this predicament? The idea is to construct a new set of basis functions

based on particular linear combinations of our reference {|ψ(0)
k ⟩} which diagonalize the q × q sub-

matrix block of Ĥ(1) with j, k ≤ q. Once diagonalized, the Ĥ
(1)
jk matrix elements with j ̸= k are, by

definition, zero. The corresponding {c(1)kj } coefficients will therefore vanish as the numerator goes
to zero, solving our exploding coefficients problem. The remainder of the problem may be solved
exactly as we treated it in the first-order non-degenerate case.

Let’s call |ψ̄j⟩ the wavefunctions which diagonalize Ĥ(1) with j, k ≤ q. We can generate |ψ̄j⟩ as
linear combinations of the zeroth-order eigenfunctions:

|ψ̄j⟩ =
q∑
i

aji|ψ(0)
i ⟩ (45)

Assuming that all other Ĥ(0) eigenstates are non-degenerate, our reference basis is now given by:

{|ψ̄1⟩, |ψ̄2⟩, · · · , |ψ̄q⟩, |ψ(0)
q+1⟩, |ψ

(0)
q+2⟩, · · · } (46)

Conveniently, the diagonal elements of the q×q submatrix of Ĥ(1) are exactly the first-order energy

corrections E
(1)
j for j ≤ q:

E
(1)
j = ⟨ψ̄j |Ĥ(1)|ψ̄j⟩ = Ĥ

(1)
jj (j ≤ q) (47)

For now, we will just emphasize this conceptual approach and won’t go into further detail regard-

ing how one actually goes about diagonalizing the blocks of Ĥ(1) spanned by degenerate |ψ(
j0)⟩

eigenstates.
Note that while we unfortunately have to diagonalize parts of Ĥ(1) in this degenerate case, this

is still a much easier job than forgoing perturbation theory entirely and trying to diagonalize the
entire thing.
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