
CHM 502 - Module 7 - Spectroscopy

Prof. Marissa Weichman

We will now determine the spectrum of frequencies of monochromatic radiation that absorbed
by a molecule, using transition rates derived from time-dependent perturbation theory (TDPT).

We will show how the absorption spectrum is related to a quantity called the dipole correlation
function. This all tees up the derivations of spectroscopic selection rules that we will cover in the
next module. We will also consider how molecular absorption lineshapes are broadened by various
homogeneous and heterogeneous processes.

1 Recap: Transitions driven by monochromatic light

Let’s first recap our major takeaway of TDPT. We consider a small perturbation to our Hamiltonian
Ĥ = Ĥ(0) + Ĥ(1)(t). When Ĥ(1)(t) = V̂ cos(ωt), we use TDPT to find the transition probability
between two discrete eigenstates, |ψi⟩ and |ψf ⟩ of Ĥ(0):

Pf←i(t) =
|Vfi|2

ℏ2
·
sin2(12(ωfi − ω)t)

(ωfi − ω)2
(1)

where ωfi = (Ef − Ei)/ℏ and Vfi = ⟨ψf |V̂ |ψi⟩.
The frequency-dependence of Pf←i is sharply peaked around ω = ωfi:

Pf←i becomes increasingly sharply peaked over time, squeezing in about ωfi. In this way, it
approaches a δ function in the long-time limit:

lim
t→∞

sin2(12(ωfi − ω)t)
(ωfi − ω)2

=
πt

2
· δ(ωfi − ω) (2)

We can therefore write our long-time limit of the transition probability as:

Pf←i(t) =
π

2ℏ2
· |Vfi|2 · δ(ωfi − ω) · t (3)
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Since this probability is linear in t, we can consider instead the transition rate:

Γfi =
π

2ℏ2
· |Vfi|2 · δ(ωfi − ω) (4)

2 Connecting the transition rate to an absorption cross section

Our task is to directly connect Eqn. 4 to the absorption cross section σ(ω) given by the Beer-
Lambert law. The Beer-Lambert law states that the fraction of light transmitted through a sample
with pathlength L is given by:

T (ω) =
I(ω)

I0
= exp [−∆N σ(ω)L] (5)

where I0 is the initial intensity of light impinging on the sample, I(ω) is the frequency-dependent
intensity of the transmitted beam, and ∆N = Ni−Nf is the difference in number densities between
molecules in the initial and final quantum states of a given transition. If one were to assume that
all molecules were in their ground state, then ∆N = N , the total molecular number density.

T (ω) is a unitless fractional quantity, while we use cgs units for N(cm−3), σ(cm2) and L(cm).
The absorption cross section σ(ω) is the important bit here, as it is intrinsic to the quantum

mechanical properties of the molecules, rather than laboratory details like the sample density,
pathlength, or light source. σ(ω) describes the rate of energy absorption per unit time per
molecule relative to the intensity of light incident on the sample:

σ(ω) ≡ energy absorbed per unit time (energy / time)

incident intensity (energy / time / area )
∝ area (6)

=

∑
fi ℏωfi Γfi pi

I0
=

∑
fi ℏωfi

π
2ℏ2 |Vfi|

2 δ(ωfi − ω) pi
I0

(7)

Here, we have assumed that we are considering transitions between initial (i) and final (f) pairs of
states where ωfi = (Ef − Ei)/ℏ > 0. We also define pi as the probability that the system is found
in initial state i.

To simplify the above, let’s define:

V̂ = µ̂ · E0 ξ (8)

where E0 is the electric field amplitude, ξ is a unit vector along the electric field polarization, and
µ̂ is the dipole operator describing the spatial distribution of charges in the molecule. Therefore:

|Vfi|2 = | ⟨ψf |µ̂ · E0 ξ|ψi⟩ |2 = |E0|2 ⟨ψf |µ̂ · ξ|ψi⟩ |2 ≡ |E0|2 |µfi|2 (9)
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We also note that the intensity of a beam of light is proportional to the squared amplitude of
the electric field (in cgs units):

I0 =
c

8π
· |E0|2 (10)

Now plugging Eqns. 9 and 10 back into Eqn. 7, we find:

σ(ω) =

∑
fi ℏωfi

π

2ℏ2
|E0|2 |µfi|2 δ(ωfi − ω) pi
c

8π
|E0|2

(11)

=
4π2

ℏc
∑
fi

ωfi |µfi|2 pi δ(ωfi − ω) (12)

σ(ω) is indeed independent of the field amplitude, as we expect for an intrinsic molecular property.
Finally, let’s introduce a second term in the sum that treats not just absorption of light (f ←

i) but also the possibility of stimulated emission of light (i ← f). Stimulated emission occurs
resonantly when ω = ωfi, but instead adds energy ℏωfi to the field rather than absorbs it.

The rate of stimulated emission depends on pf rather than pi. So we can amend σ(ω) to:

σ(ω) =
4π2

ℏc
∑
fi

[
ωfi |µfi|2 pi δ(ωfi − ω) − ωfi |µif |2 pf · δ(ωfi − ω)

]
(13)

Now, using the fact that |µfi|2 = |µif |2:

σ(ω) =
4π2

ℏc
∑
fi

ωfi |µfi|2 δ(ωfi − ω)
[
pi − pf

]
(14)

We therefore see that the absorption cross section depends on the population difference between
the two states. This is expected since absorption (which can only occur out of lower state |ψi⟩)
will lead to a loss of transmitted intensity, while stimulated emission (which can only occur out of
upper state |ψf ⟩) will lead to gain in transmitted intensity.
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3 The Boltzmann distribution and the molecular lineshape

To evaluate in Eqn. 14 above, we usually consider a molecule thermalized to some temperature. The
probability that the molecule is found in a given state is therefore determined by the Boltzmann
distribution:

pj =
e−βEj

Q(β)
(15)

where β = 1/kBT , kB is Boltzmann’s constant, T is temperature andQ(β) is the molecular partition
function.

We can therefore evaluate pi − pf as:

pi − pf =
e−βEi − e−βEf

Q(β)
=

e−βEi

Q(β)

[
1− e−β(Ef−Ei)

]
= pi

[
1− e−βℏωfi

]
(16)

We can therefore rewrite Eqn. 14 as:

σ(ω) =
4π2

ℏc
∑
fi

ωfi |µfi|2 δ(ωfi − ω) pi
[
1− e−βℏωfi

]
(17)

The delta function inside the sum enforces the fact that only resonant transitions contribute to
the absorption cross section. We can therefore replace ωfi with ω wherever it appears outside
δ(ωfi − ω), and rewrite σ(ω) as:

σ(ω) =
4π2

ℏc
ω
[
1− e−βℏω

]∑
fi

pi · |µfi|2 · δ(ωfi − ω) (18)

We can now cleanly reorganize the absorption cross section σ(ω) by defining S(ω) as the molecular
lineshape function, which contains all information specific to the frequency response of the molecular
system:

σ(ω) =
4π2

ℏc
ω
[
1− e−βℏω

]
S(ω) (19)

S(ω) =
∑
fi

pi |µfi|2 δ(ωfi − ω) (20)

4 The dipole correlation function

We will now go a step further and show how the molecular lineshape S(ω) can be related to another
important quantity: the time correlation function of the molecular dipole.

We’ll make two substitutions to Eqn. 20: (a) expand |µfi|2 and (b) make use the following
definition of the delta function:

δ(ω − ω0) =
1

2π

∫ ∞
−∞

dt ei(ω−ω0)t (21)
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Aside: Why can we express the delta function this way? Because the Fourier transform of a sinusoid
in time yields a delta function in frequency space.

Forging ahead and recalling our definition of µfi:

S(ω) =
∑
fi

pi ⟨ψi|µ̂ · ξ|ψf ⟩ ⟨ψf |µ̂ · ξ|ψi⟩ ·
1

2π

∫ ∞
−∞

dt ei(ωfi−ω)t (22)

where we recall that µ̂ is the dipole moment operator of the molecule and ξ is a dimensionless unit
vector indicating the polarization axis of the electric field. Recalling also that ωfi ≡ (Ef − Ei)/ℏ,
we can rearrange to write:

S(ω) =
1

2π

∑
fi

pi

∫ ∞
−∞

dt e−iωt ⟨ψi|µ̂ · ξ|ψf ⟩ ⟨ψf |µ̂ · ξ|ψi⟩ ei(Ef−Ei)t/ℏ (23)

=
1

2π

∑
fi

pi

∫ ∞
−∞

dt e−iωt ⟨ψi|µ̂ · ξ|ψf ⟩ ⟨ψf |eiEf t/ℏ µ̂ · ξ e−iEit/ℏ|ψi⟩ (24)

Recalling the time evolution operator Û = e−iĤt/ℏ, we know that we can equate:

e−iEit/ℏ |ψi⟩ = e−iĤ
(0)t/ℏ |ψi⟩ = Û |ψi⟩ (25)

⟨ψf | eiEf t/ℏ = ⟨ψf | eiĤ
(0)t/ℏ = ⟨ψf | Û † (26)

Plugging these quantities back into Eqn. 24, we have:

S(ω) =
1

2π

∑
fi

pi

∫ ∞
−∞

dt e−iωt ⟨ψi|µ̂ · ξ|ψf ⟩ ⟨ψf |Û † · µ̂ · ξ · Û |ψi⟩ (27)

=
1

2π

∑
i

pi

∫ ∞
−∞

dt e−iωt ⟨ψi| µ̂ · ξ
[∑

f

|ψf ⟩ ⟨ψf |
]
Û † · µ̂ · ξ · Û |ψi⟩ (28)

We know that {|ψf ⟩} is a complete basis set, and therefore that∑
f

|f⟩ ⟨f | = Î (29)

Therefore:

S(ω) =
1

2π

∫ ∞
−∞

dt e−iωt
∑
i

pi ⟨ψi|µ̂ · ξ · Û † · µ̂ · ξ · Û |ψi⟩ (30)

=
1

2π

∫ ∞
−∞

dt e−iωt
∑
i

pi ⟨ψi|µ̂(0) · ξ · µ̂(t) · ξ|ψi⟩ (31)

In the last step we used the fact that Û † · µ̂ · Û ≡ µ̂(t) within the Heisenberg picture. Recall
that sandwiching an operator with time evolution operators represents a unitary transformation
of that operator which serves to evolve it forward in time. Note that we’ve also defined µ̂ = µ̂(0)
to underscore that the “bare” operator represents a measurement of this quantity at t = 0, again
working within the Heisenberg picture.
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Finally, we note that ξ is just a unit vector describing the polarization axis of the light’s electric
field. Let’s assume (with no loss of generality) that our light is polarized along the z axis in the
laboratory. In this case, Eqn. 31 evaluates to

S(ω) =
1

2π

∫ ∞
−∞

dt e−iωt
∑
i

pi ⟨ψi|µ̂z(0) · µ̂z(t)|ψi⟩ (32)

where µ̂z is the component of the molecular dipole operator aligned along the lab-frame z axis.
The expression ∑

i

pi ⟨ψi|µ̂z(0) · µ̂z(t)|ψi⟩ ≡ ⟨µ̂z(0) · µ̂z(t)⟩ ≡ Cµzµz(0, t) (33)

is a quantum autocorrelation function , which represents the equilibrium average of a product
of a Hermitian operator with itself evaluated at two separate points in time.

Here, we’re looking at the time autocorrelation function of the z component of the molecular
dipole moment operator µ̂z. We’re asking how well µ̂z overlaps with itself as the wavefunctions of
our collection of molecules evolve from time 0 to t. This quantity provides a statistical description of
the time-evolution of µ̂z averaged over a thermalized ensemble of quantum states that our molecules
might be in.

Qualitatively, a time autocorrelation function describes how long a property of the system
persists until it is averaged out by microscopic motions and interactions with its surroundings.
This is helpful to capture the inherent randomness of a molecular system at thermal equilibrium.

In the most compact form we can write the molecular lineshape as:

S(ω) =
1

2π

∫ ∞
−∞

dt e−iωt ⟨µ̂z(0) · µ̂z(t)⟩ (34)

The absorption lineshape is therefore directly related to the Fourier transform of the dipole
correlation function. It is from this expression that all spectroscopic selection rules arise! This
expression for S(ω) will simultaneously produce all allowed transitions from all quantum
states that are thermally occupied in the ensemble .

The complexity in Eqn. 34 arises from the time dependence of µ̂z(t) = eiĤ
(0)t µ̂z(0) e

−iĤ(0)t.
This quantity encodes (a) which pairs of molecular states are coupled by the molecular dipole,
allowing light-induced transitions and (b) how resonant frequencies of the molecular system will
appear in the absorption spectrum. If we add in some treatment of broadening mechanisms, µ̂z(t)
also accounts for how finite state lifetimes, dephasing processes, and environmental inhomogeneities
give rise to broadened experimental lineshapes.

Depending on what Hamiltonian we plug into Eqn. 34, we can consider the dynamics of all
electronic, nuclear, and spin degrees of freedom of the molecule. Soon, we will use Eqn. 34 to derive
the selection rules that govern light-induced transitions between rotational states in microwave
spectroscopy and vibrational states in infrared and Raman spectroscopy.
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5 Some qualitative examples of absorption lineshapes from the
dipole correlation function

We will quickly look at two qualitative examples for how the molecular absorption lineshape be-
haves.

Let’s first consider a system in which the dipole autocorrelation function oscillates sinusoidally
at frequency ω0:

⟨µ̂(0) · µ̂(t)⟩ ∼ µ20 cos(ω0t) (35)

where µ0 is some average permanent dipole moment. This behavior might arise in a harmonic
oscillator model of a molecular vibration where the dipole moment oscillates with the bond length.
We will revisit the exact details of this case later. But very qualitatively we have:

S(ω) =
1

2π

∫ ∞
−∞

dt e−iωt ⟨µ̂(0) · µ̂(t)⟩ (36)

=
µ20
2π

∫ ∞
−∞

dt e−iωte±iω0t ∝ µ20
2π

δ(ω ± ω0) (37)

Thus, as we might expect, the spectrum consists of sharp absorption and emission lines at frequency
ω0. Because we have introduced no broadening mechanisms, these lines appear as arbitrarily narrow
delta functions. Recall that we built up this framework beginning from Fermi’s Golden Rule, derived
in the long-time limit where the lineshapes of light-driven transitions approach delta functions!

Things gets more interesting if, for reasons we will explore shortly, the dipole autocorrelation
function both oscillates sinusoidally and decays exponentially with time:

⟨µ̂(0) · µ̂(t)⟩ ∼ µ20 cos(ω0t) e
−γ|t| (38)

This indicates a loss of correlation between µ̂ evaluated at time 0 and time t.
We won’t do out the Fourier transform integral here as it involves complex analysis, but it turns

out that the Fourier transform of f(t) = e−iω0t−γ|t| is a Lorentzian lineshape with

S(ω) ∝ γ − i(ω − ω0)

(ω − ω0)2 + γ2
(39)

The real part of this expression represents the experimentally observed broadened lineshape.
The Lorentzian absorption lineshape is ubiquitous and holds for any system whose dipole corre-

lation function decays exponentially in time. This encompasses radiative decay, nonradiative decay,
collisional broadening, and power broadening processes, which are collectively referred to as forms
of homogeneous broadening.

The Lorentzian lineshape ultimately reflects a time-energy uncertainty relation. If some decay
process limits the lifetime of a system in a given state to ∆t, then we can’t know the energy of the
transition perfectly. The Lorenzian linewidth will be given by γ ∼ 1/∆t.
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6 Radiative lifetimes and Einstein coefficients

Let’s be a bit more quantitative about the homogeneous radiative relaxation lifetimes of quantum
states. We can use Einstein coefficients to describe the rates of stimulated absorption and
emission of photons under laser illumination, as well as spontaneous emission, which describes the
radiative decay of an excited state through emission of a photon.

Consider the energy diagram of a two-level system embedded in a radiation field. Einstein
introduced three parameters which describe this situation: the A21 coefficient determines the rate
of spontaneous emission, while B12 and B21 describe the absorption and stimulated emission rates.
A21 has units of Hz, while B12 and B12 have units of m3 Hz / J · s.

Our two-level system is interacting with a radiation field with energy density ρ(ν) per unit
frequency. Here, we will work with ρ(ν) in units of J/m3 per unit bandwidth in Hz, though it is
not uncommon to see ρ(ν) in other units. Note that we are also working with frequency ν = ω/2π.
This happens to be the convention when writing down Einstein coefficients.

The absorption coefficient B12 determines the rate with which upward transitions 1→ 2 occur
in the radiation field. The number of photons of frequency ν absorbed per second is given by:

k1→2 = N1B12 ρ(ν) [s−1] (40)

where N1 is the number of emitters initially in state 1.
The number of photons of frequency ν emitted per second comes from 2→ 1 downward transi-

tions stimulated by the radiation field as well as from the field-independent spontaneous emission:

k2→1 = N2B21 ρ(ν) +N2A12 [s−1] (41)

where N2 is the number of emitters initially in state 2.
A12, B12 and B21 are inherent properties of the emitter, independent of the radiation field. Thus,

we can choose an arbitrary radiation field for the purposes of determining the relationships between
these coefficients. It is mathematically convenient to consider a system at thermal equilibrium,
where the radiation energy density at frequency ν is given by the Planck distribution:

ρ(ν) =
8πhν3

c3
1

ehν/kBT − 1
[J/m3/Hz] (42)

We can now apply the principle of detailed balance (or microscopic reversibility) which states
that at thermal equilibrium, the rate of upward transitions must exactly match the rate of downward
transitions – otherwise we are not in equilibrium. Here, the relative populations in states 1 and 2
are given by the Boltzmann distribution:

N2

N1
=
g2
g1
e−(E2−E1)/kBT (43)
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where gi is the degeneracy of state i. Thus, we must have

k1→2 = k2→1 (44)

= N1B12 ρ(ν) = N2B21 ρ(ν) +N2A12 = N2 [B21 ρ(ν) +A12] (45)

→ N2

N1
=

B12 ρ(ν)

B21 ρ(ν) +A21
=
g2
g1
e−(E2−E1)/kBT (46)

where in the last step we used our result from Eqn. 43.
We now consider the resonant condition hν = E2 − E1. We will rearrange Eqn. 46 to solve for

ρ(ν) and set it equal to the Planck distribution from Eqn. 49:

B12 ρ(ν) =
g2
g1
e−hν/kBT [B21 ρ(ν) +A21] (47)

→ ρ(ν)

[
B12 −

g2
g1
e−hν/kBTB21

]
=
g2
g1
e−hν/kBTA21 (48)

→ ρ(ν) =

g2
g1
e−hν/kBTA21

B12 − g2
g1
e−hν/kBTB21

=

g2
g1
A21

B12 ehν/kBT − g2
g1
B21

?
=

8πhν3

c3
1

ehν/kBT − 1
(49)

We must now define A12, B12, and B21 in terms of one another such that the equality in Eqn. 49
is enforced. I will write the solution down and you can check for yourself that it works:

A21 =
8πhν3

c3
B21 B12 =

g2
g1
B21 (50)

The Einstein coefficients are therefore not independent quantities. Once you have one, all three
are determined. They have straightforward relationships to other quantities which describe the
likelihood of absorption of light, including the absorption cross section. These relationships are
nicely laid out by Hilborn (Am. J. Phys. 50, 982 (1982)) if you ever need to use them.

Let’s briefly note some last takeaways regarding spontaneous emission in particular:

� A21 ∼ 1/τrad represents the inverse of the radiative (or fluorescence) lifetime, and N2A21

represents the number of photons spontaneously emitted per second by an ensemble. From
Eqn. 50 we can see that A21 scales with ν3.

� At frequencies corresponding to visible light, A21 can be quite large, resulting in short radia-
tive lifetimes which can be the dominant mode of broadening (100 ns ↔ 100 MHz).

� At low frequencies, including the infrared regime, ν3 is small, resulting in very slow fluo-
rescence, and therefore extremely narrow natural linewidths, on the order of Hz. The slow
emission rate at small frequencies is the reason that fluorescence measurements are routinely
made at optical wavelengths, but are much more challenging in the infrared.
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7 Other broadening processes

We have seen that the lineshape of the absorption cross section arises from the temporal dynamics
of the molecular dipole operator. There are numerous processes that can influence this lineshape.

� Molecular effects arise from the dynamics of a single emitter

� Ensemble effects arise from disorder averaged across a population

� Dynamic processes and disorder lead to homogeneous broadening with Lorentzian lineshapes

� Static disorder leads to inhomogeneous broadening with Gaussian lineshapes

7.1 Population relaxation

Population relaxation is a homogeneous process causes Lorenzian broadening of the lineshape
through exponential decay of the dipole correlation function due to a finite excited state lifetime.
A finite state lifetime can have contributions from radiative decay (e.g. spontaneous emission)
or non-radiative processes, which might include internal conversion, intersystem crossing, and in-
tramolecular vibrational relaxation.

These decay processes are qualitatively described by a timescale T . If each decay is independent,
the exponential decay rates add as:

1

T
=

1

T1
+

1

T2
+ . . . (51)

If population relaxation is the only broadening mechanism, all members of the ensemble behave
identically and the experimentally measured linewidth describes the state lifetimes of a single
emitter.

7.2 Dephasing

Dephasing processes scramble the phase of oscillations of the dipole correlation function within an
ensemble. This usually occurs as a result of interactions with the environment. This is a ensemble
averaging effect in which the phase relationships of oscillations between members of the ensemble
are slowly destroyed by dynamic disorder.

Examples of dephasing include fluctuations induced by collisions with solvent in a liquid phase
sample. Each collision that an individual emitter experiences effectively “resets” its phase by
introducing a random phase shift. This process causes destructive interference between emitters
over time.
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In gas phase samples, collisional broadening is known as pressure broadening, and is usually
characterized phenomenologically with a pressure broadening coefficient γ (MHz/torr or cm−1/torr),
which describes how the pressure-broadened half-width-at-half-maximum scales linearly with gas
pressure.

A related process is orientational relaxation. Since the dipole correlation function depends on
the projection of the molecular dipole moment onto a fixed laboratory axis set by the polarization
of the laser field, randomization of the initial dipole orientations is an ensemble-averaged dephasing
effect. In solution, transition dipoles are often treated as having orientations which diffuse over
time.

7.3 Sample inhomogeneity

Lineshapes can also be broadened by an inhomogeneous distribution of molecular absorption fre-
quencies. If molecules in the ensemble are influenced by inhomogeneous environmental variations,
the observed lineshape will appear Gaussian. This is an ensemble averaging effect which can obscure
the dynamical processes encoded in the homogeneous linewidth.

Let’s give a concrete example. In gases, inhomogeneous Doppler broadening arises due to the
velocity distribution of the ensemble of emitters. Just like a pedestrian hears a Doppler shift in the
siren frequency of a firetruck as it speeds past, the velocity of a molecule towards or away from the
light source creates an optical Doppler shift:

ω = ω0

(
1 +

v

c

)
(52)

where ω is the observed frequency, ω0 is the unshifted frequency, and v is the velocity of the emitter
towards the light source. The distribution of molecular velocities therefore leads to a broadening
in observed transition frequencies.
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The velocity distribution for a sample of molecules with mass m thermalized to temperature T
is given by the Maxwell-Boltzmann distribution:

Pv(v)dv =

√
m

2πkBT
exp

(
− mv2

2kBT

)
(53)

By combining Eqns. 52 and 53, one can find the distribution of observed frequencies:

Pω(ω)dω =

√
mc2

2πkBTω2
0

exp

(
−mc

2(ω − ω0)
2

2kBTω2
0

)
(54)

This is another Gaussian distribution centered about ω0 with standard deviation

σ =

√
kBT

mc2
ω0 (55)

Doppler broadening therefore scales linearly with the transition frequency and dominates for small
masses and at high temperatures.

7.4 Simultaneous homogeneous and inhomogeneous broadening

A final note is that the homogeneous and inhomogeneous linewidths can be comparable in scale for
some systems. In this case, the lineshape is described by a Voigt profile, which is the convolution
of a Gaussian and a Lorentzian:

V (x;σ, γ) =

∫ ∞
−∞

dx′G(x′;σ)L(x− x′; γ) (56)

There is no analytical form for the Voigt lineshape, so it must be calculated numerically.
Plotted below are Gaussian and Lorentzian lineshapes which are normalized with equal areas.

A Gaussian lineshape has a higher maximum intensity, while the Lorentzian lineshape has more
intensity in its wings. The Voigt profile falls in an intermediate regime between the Gaussian
and Lorenzian lineshapes, and its shape depends on the relative scales of the Gaussian standard
deviation σ and Lorentzian linewidth γ.
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