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Let’s now turn our attention to electronic states and light-driven transitions between them.

1 The Born-Oppenheimer approximation

For molecules, all information is contained in the wavefunction Ψ, which is a solution to the time-
independent Schrödinger equation:

ĤΨ(r⃗, R⃗) = EΨ(r⃗, R⃗) (1)

where r⃗ stands collectively for the spatial and spin coordinates of the n electrons in the molecule,
and R⃗ denotes collectively the positions of all N nuclei in the molecule. The total Hamiltonian for
the molecule is:

Ĥ = T̂N + T̂e + V̂eN + V̂ee + V̂NN ≡ T̂N + Ĥel (2)

where T̂ terms represent kinetic energy operators for movement of the electrons and nuclei. V̂
terms represent potential energy operators that derive from Coulomb interaction energies between
nuclei and electrons, among electrons, and among nuclei. e labels electronic degrees of freedom and
N represents nuclear degrees of freedom. We therefore have:

T̂N = −
∑
i

ℏ2

2Mi
∇2

Ri
(3)

T̂e = −
∑
i

ℏ2

2me
∇2

ri (4)

V̂e,N = −
∑
i,j

Zi · e2

4πϵ0|R⃗i − r⃗j |
(5)

V̂e,e = −
∑
i,j

e2

4πϵ0|r⃗i − r⃗j |
(6)

V̂N,N = −
∑
i,j

Zi · Zj · e2

4πϵ0|R⃗i − R⃗j |
(7)

where Mi is the mass and Zi is the nuclear charge of the ith nucleus, me is the electron mass, and
e is the electron charge. ∇2

ri =
∂2

∂x2
i
+ ∂2

∂y2i
+ ∂2

∂z2i
is the Laplacian operator.

Eqn. 2 is therefore a (3n+ 3N)-dimensional second order partial differential equation which is
not easily solved.
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Because the masses of the nuclei are much larger than those of the electrons, the nuclei move
slowly compared to the electrons. It is usually (but not always!) a good approximation to assume
that the energy of the system due to the motion of electrons can be determined accurately with the
nuclei held fixed at each possible set of nuclear positions. In other words, it is assumed that the
electrons adjust adiabatically to small or slow changes in the nuclear geometry. This approximation
and its consequences were first examined by Born and Oppenheimer (Ann. Physik 84, 457 (1927)).

Within the Born-Oppenheimer approximation, the total wavefunction is separable

Ψ(r⃗, R⃗) = Ψel(r⃗; R⃗) ·Ψnuc(R⃗) (8)

into a nuclear part Ψnuc that depends only upon the nuclear coordinates R⃗ and an electronic part
Ψel that depends on the electronic coordinates r⃗, but only parametrically on R⃗.

Ψel is the solution of the electronic eigenvalue equation

Ĥel Ψel(r⃗; R⃗) = Eel(R⃗)Ψel(r⃗; R⃗) (9)

where Eel(R⃗) is the potential energy surface, or in the case of a diatomic molecule, the potential
energy curve of the molecule in a particular electronic state.

Substituting the Born-Oppenheimer wavefunction into Eqn. 2, we find:

ĤΨ =
[
T̂N + Ĥel

]
ΨelΨnuc = EΨelΨnuc (10)

= −
∑
i

ℏ2

2Mi
∇2

i Ψ
elΨnuc + Ĥel ΨelΨnuc (11)

≃ −Ψel
∑
i

ℏ2

2Mi
∇2

i Ψ
nuc + Eel(R⃗)ΨelΨnuc (12)

where we have implicitly made the assumption that

∇2
i Ψ

elΨnuc ≃ Ψel∇2
i Ψ

nuc (13)

which comes down to neglecting “non-adiabatic” interactions. This is usually justified, except
when the electronic wavefunction changes rapidly with the nuclear coordinates. This can happen,
for example, in the regions where two states interfere with one another near a curve crossing or
conical intersection.

In any event, we can continue on to write

ĤΨ = −��Ψel
∑
i

ℏ2

2Mi
∇2

i Ψ
nuc + Eel(R⃗)�

�ΨelΨnuc = E�
�ΨelΨnuc (14)

→

[
−
∑
i

ℏ2

2Mi
∇2

i + Eel(R⃗)− E

]
Ψnuc(R⃗) = 0 (15)

This last expression is an eigenvalue equation for the nuclear motion, where Eel(R⃗) acts as the
potential in which the nuclei move.

This approximation gives us a straightforward way to separately determine the electronic and
nuclear wavefunctions:

2



� First, we solve Eqn. 9 for fixed nuclear coordinates R⃗ and repeat this process to map out the
Eel(R⃗) surfaces for each electronic configuration. In practice, one uses a quantum chemistry
software package to do this.

� Then, we use these Eel(R⃗) surfaces as our potential energy curves and solve Eqn. 15 to
find the vibrational nuclear wavefunctions for each electronic state. The harmonic oscillator
approximation is often assumed near a minimum on each Eel(R⃗) surface.

For the sake of completeness, we also note here that the nuclear wavefunction is in fact composed
of both vibrational and nuclear wavefunctions, which we usually take to be separable, ignoring any
vibration-rotation interaction Ψnuc = ΨvibΨrot.

2 Vibronic transitions and the Franck-Condon principle

Let’s now think about transitions between electronic states, which can also be accompanied by a
change in the vibrational wavefunction. We’ll first consider this the usual way, in the context of
Fermi’s Golden Rule, which tells us that the probability of making a transition between state Ψi

and state Ψf is given by:

Γfi ∝ |⟨Ψf |µ̂|Ψi⟩|2 (16)

Within the Born-Oppenheimer approximation, and neglecting the rotational part of the nuclear
wavefunction, we can write

|Ψ⟩ = |Ψvib(R⃗)⟩ |Ψel(r⃗; R⃗)⟩ (17)

For the permanent dipole moment operator µ̂ we must now consider contributions from both nuclear
and electron charges:

µ̂ =
N∑
i=1

Zi · R⃗i +
n∑

i=1

e · r⃗i ≡ µ̂N (R⃗) + µ̂e(r⃗) (18)

Let’s now evaluate the matrix element:

⟨Ψf |µ̂|Ψi⟩ = ⟨Ψvib
f |⟨Ψel

f | [µ̂N + µ̂e] |Ψel
i ⟩|Ψvib

i ⟩ (19)

= ⟨Ψvib
f |⟨Ψel

f | µ̂N |Ψel
i ⟩|Ψvib

i ⟩+ ⟨Ψvib
f |⟨Ψel

f | µ̂e |Ψel
i ⟩|Ψvib

i ⟩ (20)

Let’s evaluate the two components of this last expression separately. First, the transition dipole
matrix element arising from the nuclear contribution to the permanent dipole moment:

⟨Ψvib
f (R⃗)| ⟨Ψel

f (r⃗; R⃗)| µ̂N (R⃗) |Ψel
i (r⃗; R⃗)⟩ |Ψvib

i (R⃗)⟩ (21)

=

∫ ∫
dr⃗ dR⃗ Ψvib

f (R⃗) ·Ψel
f (r⃗; R⃗) · µ̂N (R⃗) ·Ψel

i (r⃗; R⃗) ·Ψvib
i (R⃗) (22)

=

∫
dR⃗ Ψvib

f (R⃗) · µ̂N (R⃗) ·Ψvib
i (R⃗)

�������������:0∫
dr⃗ Ψel

f (r⃗; R⃗) ·Ψel
i (r⃗; R⃗) = 0 (23)
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Here, we were able to factor out the electronic component of the wavefunction into a separate
integral depending only on the electronic coordinates r⃗. For f ̸= i, the two electronic wavefunctions
are eigenfunctions of the same electronic Hamiltonian and are therefore orthogonal. So this term
does not contribute!

Let’s now consider the transition dipole matrix element arising from the second term of Eqn.
20, the electronic contribution to the permanent dipole moment:

⟨Ψvib
f (R⃗)|⟨Ψel

f (r⃗; R⃗)| µ̂e(r⃗) |Ψel
i (r⃗; R⃗)⟩|Ψvib

i (R⃗)⟩ (24)

≡ ⟨Ψvib
f (R⃗)|Del(R⃗)|Ψvib

i (R⃗)⟩ (25)

where we define Del(R⃗) = ⟨Ψel
f |µ̂e|Ψel

i ⟩ as the electronic transition dipole moment. This quantity
tells us whether the transition between two electronic configurations is allowed, and is easily evalu-
ated using group theory. To treat the dependence of Del(R⃗) on the nuclear coordinates, we perform
yet another Taylor expansion:

Del(R⃗) = Del(R⃗eq) +
dDel(R⃗)

dR⃗

∣∣∣∣
Req

(R⃗− R⃗eq) + · · · (26)

We’ll perform a severe truncation this time, and assume that the electronic transition dipole varies
very little near equilibrium, and therefore:

Del(R⃗) ≃ Del(R⃗eq) (27)

Finally, we can wrap up our derivation of the total transition dipole matrix element:

⟨Ψf |µ̂|Ψi⟩ = ⟨Ψvib
f (R⃗)|Del(R⃗)|Ψvib

i (R⃗)⟩ (28)

= ⟨Ψvib
f (R⃗)|Del(R⃗eq)|Ψvib

i (R⃗)⟩ (29)

= ⟨Ψvib
f (R⃗)|Ψvib

i (R⃗)⟩Del(R⃗eq) (30)

= ⟨Ψvib
f |Ψvib

i ⟩ · ⟨Ψel
f | µ̂e |Ψel

i ⟩ (31)

We’ve arrived now at the major statement of vibronic selection rules, which has two elements.
The intensity of a vibronic transition depends on:

� The electronic transition dipole moment Del(R⃗) = ⟨Ψel
f |µ̂e|Ψel

i ⟩ ̸= 0. This quantity tells us
whether the transition between two electronic configurations is dipole-allowed. It is most
easily evaluated using group theory, where we can take direct product of irreducible repre-
sentations as a shortcut to evaluating integrals over all space. An electronic transition is
dipole-allowed if the direct product Γi ⊗ Γx,y,z ⊗ Γf contains the totally symmetric represen-
tation.

� The so-called Franck-Condon factor ⟨Ψvib
f |Ψvib

i ⟩. Note that Ψvib
i and Ψvib

f are not orthog-
onal, because they represent eigenfunctions of the vibrational Hamiltonian of two different
electronic surfaces. The change in vibrational quantum state that accompanies a change in
electronic state depends on the net overlap between the vibrational wavefunction in the initial
and final states. The physical interpretation of the Franck-Condon factor is consistent with
the original basis of the Born-Oppenheimer principle, namely that nuclei move much more
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slowly than electrons. In effect, in the time it takes for an electronic transition to occur,
the nuclei do not move. Thus, the band with the highest transition probability is the one
for which the transition is “vertical”: the molecule finds itself instantaneously in the excited
electronic state with the same internuclear separation as it had in the ground electronic state.

We sketch the FC principle below for a diatomic molecule. Typically the equilibrium bond length
in the excited state R′

e is greater than that in the ground state R′′
e because electronic excitation

tends to weaken bonds. The only regions of the excited state potential that are accessible in the
transition are those for which the vibrational wavefunction of the ground state has finite value.
In this cartoon the FC factor is largest for the transition v′ = 4 ← v′′ = 0, though it is also
appreciable for neighboring v′. This yields an intensity distribution like that illustrated in panel
(b). Such an intensity distribution is called a “vibrational progression,” which involves a series of
vibronic transitions between two common electronic states, and with the lower vibrational level in
common.

Another useful way to think about the Franck-Condon principle is that upon electronic exci-
tation, we project the ground state vibrational wavepacket onto the excited state surface. Let’s
sketch very quickly why this is the case. Say we start in the ground vibrational state |0g⟩ of the
electronic ground state |g⟩, and excite to the manifold of |ne⟩ vibrational states of the electronic
excited state |e⟩.

|0g⟩|g⟩
hν−→ |0g⟩|g⟩ +

∑
n

|ne⟩|e⟩ · ⟨e|µ̂e|g⟩ · ⟨ne|0g⟩ (32)

= |0g⟩|g⟩ + Del |e⟩
∑
n

|ne⟩ · ⟨ne|0g⟩ (33)

= |0g⟩|g⟩ + Del |0g⟩|e⟩ (34)

where we used the resolution of the identity for a complete set of eigenvectors:
∑

n |ne⟩ · ⟨ne| = Î.
We can see from this exercise that photoexcitation recreates the ground state |0g⟩ vibrational

wavefunction on the excited state surface by populating a series of |ne⟩ states that form a basis set
expansion of |0g⟩.
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