
CHM 502 - Module 10 - Density Matrices & Dephasing

Prof. Marissa Weichman

So far, we’ve discussed the time-dependent behavior of quantum mechanical systems that can
be described neatly by a wavefunction, with perfectly coherent behavior. In the real world, how-
ever, we are usually dealing with messy ensembles of quantum systems which exhibit disorder and
decoherence. In order to describe these ensembles, we will need to work with statistical mixtures
of species in well-defined quantum states.

The density matrix (or density operator) ρ is critical infrastructure to treat statistical mixtures
of quantum systems. We’ll start by reviewing this formalism. The treatment we follow here borrows
heavily from Peter Hamm’s excellent pamphlet “Mukamel for Dummies” as well as from Andrei
Tokmakoff’s notes on time-dependent quantum mechanics – both a highly recommended read for
more details.

1 The density matrix of a pure state

The density matrix of a pure quantum state |ψ⟩ is defined as the outer product of the wavefunction
with its conjugate transpose:

ρ ≡ |ψ⟩ ⟨ψ| (1)

Note that we define a “pure state” here as any quantum where we can write down the wavefunction
– it could be an energy eigenstate, or some superposition state.

We can expand |ψ⟩ in some convenient basis {|n⟩} as:

|ψ⟩ =
∑
n

cn |n⟩ and ⟨ψ| =
∑
n

c∗n ⟨n| (2)

The density matrix can therefore be expressed as

ρ =

[∑
n

cn |n⟩

][∑
m

c∗m ⟨m|

]
=

∑
n,m

cnc
∗
m |n⟩ ⟨m| (3)

or by its matrix elements

ρnm ≡ ⟨n|ρ|m⟩ = cnc
∗
m (4)

The inner product ⟨n|ρ|n⟩ = |cn|2 represents the probability that we find the system in state |n⟩,
hence the term “density matrix,” since ρ describes the quantum probability density of a system.
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The density operator has many convenient properties which we will see shortly. One convenient
property is a new means of expressing expectation values:

⟨A⟩ = ⟨ψ|Â|ψ⟩ =

[∑
m

c∗m ⟨m|

]
Â

[∑
n

cn |n⟩

]
(5)

=
∑
n,m

c∗mcn ⟨m|Â|n⟩ =
∑
n,m

c∗mcnAmn (6)

=
∑
n,m

ρnm ·Amn = Tr(ρA) (7)

where in the last step we’ve used a definition for the trace of a product of two matrices.
The time-evolution of the density operator is given by the Liouville-Von Neumann equation,

which is straightforward to derive from the time-dependent Schrödinger equation:

d

dt
ρ =

d

dt

[
|ψ⟩ ⟨ψ|

]
=

[
d

dt
|ψ⟩

]
⟨ψ|+ |ψ⟩

[
d

dt
⟨ψ|

]
(8)

= − i

ℏ
Ĥ |ψ⟩ ⟨ψ|+ i

ℏ
|ψ⟩ ⟨ψ| Ĥ = − i

ℏ

[
Ĥ, ρ

]
(9)

It turns out that the Liouville-Von Neumann equation gives you the same the time dependence
of ρ(t) as you would find within the Heisenberg picture:

ρ(t) = |ψ(t)⟩ ⟨ψ(t)| = Û |ψ(0)⟩ ⟨ψ(0)| Û † = Ûρ(0)Û † (10)

The time dependence of the matrix elements of ρ(t) are useful to inspect:

ρnm(t) = ⟨n|ρ(t)|m⟩ = ⟨n|Ûρ(0)Û †|m⟩ (11)

= ⟨n|e−iEnt/ℏρ(0)e+iEmt/ℏ|m⟩ (12)

= e−iωnmtρnm(0) where ωnm = (En − Em)/ℏ (13)

We can see here that the diagonal elements ρnn(t) = ρnn(0), since the probabilities of being in an
eigenstate |n⟩ are time-invariant. Meanwhile, the off-diagonal elements ρnm(t) represent coherences
and oscillate at the energy splitting ωnm.

We can finally note a few relevant properties of the density matrix:

� The density matrix is Hermitian, since
[
|ψ⟩ ⟨ψ|

]†
= |ψ⟩ ⟨ψ| and ρnm = ρ∗mn

� The diagonal elements of ρ are non-negative: ρnn ≥ 0, and ρnn can be viewed as the proba-
bility of the system to be found in state |n⟩.

� Tr(ρ) =
∑

n |cn|2 = 1, assuming wavefunction is correctly normalized.

� ρ2 = |ψ⟩ ⟨ψ|ψ⟩ ⟨ψ| = |ψ⟩ ⟨ψ| = ρ. We therefore also have Tr(ρ2) = 1 for a pure quantum state.
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2 Example: Density matrices of two-level systems

Let’s consider a two-level system with basis states |1⟩ and |2⟩ representing the eigenstate basis of
Ĥ. We can write down the density matrices for various wavefunctions:

|ψ⟩ = |1⟩ → ρ =

(
1 0
0 0

)
(14)

|ψ⟩ = |2⟩ → ρ =

(
0 0
0 1

)
(15)

|ψ⟩ = 1√
2
[|1⟩+ |2⟩] → ρ =

(
1
2

1
2

1
2

1
2

)
(16)

We can also explicitly solve the Liouville-Von Neumann equation for this system. If we have
Hamiltonian

Ĥ = ℏ
(
ω1 0
0 ω2

)
(17)

We therefore have:

d

dt
ρ = − i

ℏ

[
Ĥ, ρ

]
(18)

d

dt

(
ρ11 ρ12
ρ21 ρ22

)
= −i

[(
ω1 0
0 ω2

)(
ρ11 ρ12
ρ21 ρ22

)
−

(
ρ11 ρ12
ρ21 ρ22

)(
ω1 0
0 ω2

)]
(19)

= −i
(

0 ω12 ρ12
ω21 ρ21 0

)
(20)

And therefore:

ρ̇11 = 0 → ρ11(t) = ρ11(0) (21)

ρ̇22 = 0 → ρ22(t) = ρ22(0) (22)

ρ̇12 = −iω12 ρ12 → ρ12(t) = e−iω12tρ12(0) (23)

ρ̇21 = −iω21 ρ21 → ρ21(t) = e+iω12tρ21(0) (24)

The diagonal elements are independent of time, while the off-diagonal elements oscillate with the
frequency splitting ω12 = ω1 − ω2.
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3 Density matrices of mixed states

So far we have defined the density matrix of a pure quantum state, ρ = |ψ⟩ ⟨ψ|. We have written
out the equations for this formalism, but we haven’t introduced any new physics yet. We could just
as well work with the wavefunction directly. For example, the equations governing time dynamics:

d

dt
|ψ⟩ = − i

ℏ
Ĥ |ψ⟩ ↔ d

dt
ρ = − i

ℏ
[H, ρ] (25)

can be used interchangeably provided that ρ is the density matrix of a pure quantum state.
However, in most real physical systems, we deal with statistical ensembles (or “mixed states”)

rather than pure states. There is no way to write down the wavefunction of a statistical average –
but we can easily write down the density matrix!

Here’s how we do this: say we have a system in a statistical mixture of quantum states, where
Pk is the probability that we find the system in a pure state |ψk⟩ (though again, |ψk⟩ may be a
superposition state of the Hamiltonian). We can define the density matrix:

ρ =
∑
k

Pk |ψk⟩ ⟨ψk| (26)

with 0 ≤ Pk ≤ 1,
∑
k

Pk = 1 (27)

This density matrix therefore has matrix elements:

ρnm = ⟨n|
[∑

k

Pk |ψk⟩ ⟨ψk|
]
|m⟩ (28)

=
∑
k

Pk ⟨n|ψk⟩ ⟨ψk|m⟩ (29)

=
∑
k

Pk [ρk]nm (30)

where ρk ≡ |ψk⟩ ⟨ψk| is the density matrix for the pure state |ψk⟩.
It’s also instructive to inspect the time-dependence of our mixed-state density matrix. Using

the product rule:

dρ

dt
=

∑
k

dPk

dt
ρk +

∑
k

Pk
d

dt
ρk (31)

=
∑
k

dPk

dt
ρk︸ ︷︷ ︸

dephasing, relaxation

− i

ℏ
∑
k

Pk

[
Ĥ, ρk

]
︸ ︷︷ ︸
quantum oscillations

(32)

where in the last step we used the Liouville-Von Neumann equation.
Finally, we can jot down a few general properties of ρ that hold even for statistical mixtures:

� ρ is still Hermitian, since it arises from a linear combination of Hermitian density matrices of
pure states

� Tr(ρ) = 1, since the diagonal elements still represent probabilities.
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� Tr(ρ2) ≤ 1, and indeed is only equal to 1 for a pure state

� Since all our work is linear in ρ thus far, the Liouville-Von Neumann equation still holds, and
we still have ⟨A⟩ = Tr(ρA).

4 Example: Mixed states of a two-level system

For a two-level system in a statistical mixture of states |1⟩ and |2⟩ with P1 = P2 =
1
2 we would find:

ρ =

(
1
2 0
0 1

2

)
(33)

Note that there is no wavefunction |ψ⟩ that would give ρ = |ψ⟩ ⟨ψ| in Eqn. 33! Instead, the
best way to think of the system that would give rise to this density matrix is an ensemble of two
non-interacting molecules, one in pure state |1⟩ and one in pure state |2⟩.

It’s worth stating explicitly that the density matrix in Eqn. 16 above does not correspond to a
wavefunction of the form:

|ψ⟩ ≠ 1√
2

[
|1⟩+ |2⟩

]
(34)

This is a pure state which instead corresponds to the density matrix in Eqn. 16, which has off-
diagonal elements describing the coherence of the superposition state.

This treatment allows us to start considering dephasing of coherent, pure quantum states into
mixed states. Consider a system with initial density matrix:

ρ(0) =

(
ρ11(0) ρ12(0)
ρ21(0) ρ22(0)

)
(35)

Let’s see what happens if we let the off-diagonal elements of ρ decay in time, obeying:

d

dt
ρ12 = −iω12 ρ12 − Γρ12 → ρ12(t) = e−iω12t e−Γt ρ12(0) (36)

d

dt
ρ21 = −iω21ρ21 − Γρ21 → ρ21(t) = e+iω12t e−Γt ρ21(0) (37)

This phenomenologically captures the exponential decay of the coherent off-diagonal elements of
the density matrix with time. These off-diagonal elements will decay to 0 as t → ∞, taking the
system from a coherent superposition state to a statistical mixture:(

ρ11(0) ρ12(0)
ρ21(0) ρ22(0)

)
→

(
ρ11(0) 0

0 ρ22(0)

)
(38)

This would take us, for instance, from Eqn. 16 to Eqn. 33.
Note that there is no way to describe such a dephasing process within in the wavefunction

picture! A wavefunction cannot be written down for a statistical mixture, and we could never write
a differential equation for our wavefunction like:

d

dt
|ψ⟩ ≠ − i

ℏ
H |ψ⟩ − Γ |ψ⟩ (39)
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5 Bloch vectors & dephasing

In statistical ensembles, molecules may undergo dephasing and population relaxation processes.
They may also have heterogeneous oscillation frequencies that destructively interfere. One can
better understand these processes using the framework of Bloch vectors.

Imagine we have a single molecule in a coherent two-level superposition state:

|ψ⟩ = c1 e
−iE1t/ℏ |1⟩+ c2(t) e

−iE2t/ℏ |2⟩ (40)

≡ cos(θ/2) e−iE1t/ℏ |1⟩+ eiϕ sin(θ/2) e−iE2t/ℏ |2⟩ (41)

where θ and ϕ are determined by the initial conditions of the system.
We can define the Bloch vector B⃗ = [Bx, By, Bz] with:

Bz(t) ≡ |c1(t)|2 − |c2(t)|2 = cos(θ) = ρ11(t)− ρ22(t) (42)

Bx(t) ≡ i [c1(t) c
∗
2(t)− c∗1(t) c2(t)] = sin(θ) sin(ω12t+ ϕ) = i [ρ12(t)− ρ21(t)] (43)

By(t) ≡ c1(t) · c∗2(t) + c∗1(t) · c2(t) = sin(θ) cos(ω12t+ ϕ) = ρ12(t) + ρ21(t) (44)

A few observations:

� By construction, the length of the Bloch vector is 1 for a pure quantum state, which maps
the space of pure-state vectors onto the surface of the “Bloch sphere.”

� The |ψ⟩ = |1⟩ state is represented by a Bloch vector pointing along the +z axis, while the
|ψ⟩ = |2⟩ state points along −z. A coherent, equally weighted superposition state will precess
around the “equator” of the Bloch sphere in the x − y plane, while unequal superposition
states will precess around the z axis at different “latitudes.”

� The connection to the density matrix elements is important. The z component of the Bloch
sphere is defined by the difference in the diagonal elements of ρ, which comes purely from
populations in different states, while the off-diagonal elements of ρ are the source of quantum
coherences that cause the Bloch vector to rotate in the x− y plane.

If we were just describing the time-dependent behavior of a single molecule, we don’t really need
the Bloch vector to understand the time dynamics of the wavefunction. On the other hand, this
framework becomes extremely useful if we have a statistical mixture of molecules whose coherences
oscillate at different frequencies, leading to dephasing. In this case, we can use the mixed state
density matrix to calculate the average Bloch vector of the ensemble.
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Recall that the density matrix for a mixed state is essentially an ensemble average over molecules
in different pure quantum states:

ρ =
∑
k

Pk |ψk⟩ ⟨ψk| (45)

Thus, we can use this mixed state density matrix to calculate the ensemble average Bloch vector:

⟨Bz(t)⟩ = ρ11(t)− ρ22(t) (46)

⟨Bx(t)⟩ = i [ρ12(t)− ρ21(t)] (47)

⟨By(t)⟩ = ρ12(t) + ρ21(t) (48)

Note also that now that our system is in a mixed state, the magnitude of its Bloch vector can be
less than 1!

Let’s now consider qualitatively what can happen to ⟨B⃗⟩ in a statistical ensemble. We can con-
sider two processes that limit the lifetime of coherences due to dephasing: destructive interference
and population relaxation.

Let’s first discuss mechanisms of destructive intereference, considering the sketch below: at
t = 0 all molecules in our ensemble have similar Bloch vectors. But if each molecule precesses with
a slightly different frequency (due to sample inhomogeneity) or experiences dynamic fluctuations
in frequency (e.g. homogeneous dephasing due to collisions), then the Bloch vectors spread out
over time and destructively interfere. The decay behavior is slightly different for homogeneous
vs. inhomogeneous processes. Regardless, each causes ⟨B⃗⟩ to spiral towards the z axis as the
projections along x and y decay. Put another way, these processes result in the decay of the off-
diagonal matrix elements of ρ which give rise to ⟨Bx⟩ and ⟨By⟩! The timescale for destructive
interference of coherence due purely to homogeneous environmental fluctuations is usually referred
to as the pure dephasing time, T ∗

2 .

We must also deal with population relaxation: the fact that the excited state of our two-level
system has a finite lifetime, due to some combination of radiative and non-radiative relaxation
processes. We’ll call this population lifetime T1. Here 1

T1
= 1

t1
+ 1

t2
+ . . . where the {tn} are all

the relaxation timescales of individual processes, which add inversely, as their rates. In the Bloch
vector diagram, T1 decay looks like an additional decay of the z component of ⟨B⃗⟩ until it reaches
⟨Bz⟩ = 1, indicating that all population has returned to the ground state at long times.

Our phenomenological description of the decay of quantum coherences lets us motivate the way
that elements of the density matrix decay. It’s straightforward to write down the “population”
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matrix elements:

ρ22(t) = ρ22(0) · e−t/T1 (49)

ρ11(t) = 1− ρ22(t) (50)

Meanwhile the coherent, off-diagonal elements of the density matrix decay due to both population
relaxation and dephasing:

ρ12(t) = ρ12(0) · e+iω12t · e−t/2T1 · e−t/T ∗
2 ≡ ρ12(0) · e+iω12t · e−t/T2 (51)

ρ21(t) = ρ21(0) · e−iω12t · e−t/2T1 · e−t/T ∗
2 ≡ ρ21(0) · e−iω12t · e−t/T2 (52)

where we define the total homogeneous dephasing time as 1
T2

≡ 1
T ∗
2
+ 1

2T1
. Note thatthe off-diagonal

elements decay as 2T1 rather than T1. This is because ρ22(t) = ρ22(0) · e−t/T1 ∝ |c2(t)|2, so

c2(t) ∝
[
e−t/T1

]1/2
. Therefore, e.g. ρ21(t) ∝ c∗1(t)c2(t) ∝ e−t/2T1 .
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