
CHM 504 - Linear & Nonlinear Spectroscopy

Prof. Marissa Weichman

In this last lecture on spectroscopy and light-matter interactions, we will try to provide some
final intuition to wrap up everything we’ve discussed so far, and motivate how one could use the
infrastructure we’ve built up to discuss higher-order nonlinear and multidimensional spectroscopies.

1 Putting some pieces together

What are we actually doing when we perform a spectroscopic experiment? Let’s imagine that we
prepare a two level system in its ground state at time t = −∞. We weakly excite the system with
a laser pulse at t = 0 oscillating resonantly with ω = ω12, and then we let the system propagate
field-free for time t:

|ψ(−∞)⟩ = |1⟩ −−−→
pump

|ψ(0)⟩ = c1 |1⟩+ c2 |2⟩ −−−−→
evolve

|ψ(t)⟩ = c1 e
−iE1t/ℏ |1⟩+ c2 e

−iE2t/ℏ |2⟩

where we assume c1 ≈ 1 ≫ c2 for a weak pulse.
Importantly, by pumping the system, we have created a coherent superposition of the |1⟩ and

|2⟩ states. To make this happen, the oscillating electromagnetic field pushed and pulled on the
charge distribution of the molecule in order to get the molecule to vibrate. As a result, the phase of
the molecular vibration becomes synchronized to the field. This process creates a non-equilibrium
distribution of charges in the system, which we can refer to as the macroscopic polarization of the
sample: P (t). The goal of much of time-resolved and nonlinear spectroscopy is to recover this
quantity.

Practically, we define this macroscopic polarization as the expectation value of the transition
dipole:

P (t) ≡ ⟨µ⟩ = ⟨ψ(t)|µ̂|ψ(t)⟩ (1)

= |c1|2 ⟨1|µ̂|1⟩+�
��>

0
|c2|2 ⟨2|µ̂|2⟩+ c∗1c2e

+iω12t ⟨1|µ̂|2⟩+ c1c
∗
2e

−iω12t ⟨2|µ̂|1⟩ (2)

≈ |c1|2µ11 + 2c1c2µ12 cos(ω12t) (3)

where µ11 is the static dipole of the molecule in its ground state; since this first term is time-
independent and not field-induced, it’s not of great interest here. We can also neglect the µ22 term
since the |c2|2 coefficient that multiplies it is assumed to be small. We have also assumed here (in
service of making a point) that c1 and c2 are real, and that µ12 = µ21.

Moreover, we know from perturbation theory that c2 ∝ µ12, since the transition dipole coupling
to the field of light is what created the coherent superposition state in the first place. Therefore,
the field-induced part of the macroscopic polarization is just:

P (t) ∝ µ212 cos(ω12t) (4)
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If you go back to the Module 10 notes, you can see that this quantity is also proportional to the ⟨By⟩
component of the Bloch vector, which oscillates sinusoidally in time when the state is coherent.

For an ensemble, we can use the same description of the macroscopic polarization, making use
of mixed-state density matrices:

P (t) = ⟨µ̂⟩ = Tr [ρµ] =
∑
n,m

ρnmµmn =
∑
n,m

⟨cnc∗m⟩µmn (5)

where again we can see that it is the off-diagonal elements of ρ which couple to µmn, allowing the
system to absorb or emit light.

Aside: This is a good point to emphasize the classical description of light-matter interactions,
which provides some useful intuition. Just as an oscillating field drives the dipole of our
molecule to vibrate, the oscillating dipole of our molecule acts as an antenna, and will radiate
light itself.

The molecular dipole oscillates with a 90o (π/2) phase shift with respect to the incident
driving field Einc(t). This phase shift arises conceptually because dµ

dt is maximized when the
field amplitude is maximized. The radiated field, Esig(t), experiences the same phase shift with
respect to the dipole’s oscillations for the same reason.

For continuous wave illumination, the radiated field oscillates 180o out of phase with the
incident field, leading to destructive interference of the two fields when we experimentally
detect Einc + Esig in an experiment. We think of this phenomenon as light being absorbed by
the molecule.

In a pulsed experiment, where Einc is shut off after some period of time, then Esig can
be detected directly with no interference from Einc. In reality, Esig will decay in time due
to dephasing and population decay effects. You might be familiar with this idea from NMR,
where this signal is known as the free induction decay.

2 Linear and nonlinear spectroscopy

Up to this point we have considered linear spectroscopies, where an ensemble of molecules interacts
with a single, weak, monochromatic beam of light. We now turn to a treatment of nonlinear
spectroscopies, where higher-order processes are possible. A sample can interact with several pulses
of light of different frequencies, potentially arriving at different times.

In traditional linear spectroscopy, we use a few observables to extract information about our
sample from its spectrum: the resonance frequencies of absorption or emission features, the spectral
intensities of these features, and the lineshapes of these features. In complex systems, there are
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many absorbing species present, and various interacting degrees of freedom can lead to congested
or featureless spectra, making interpretation challenging and ambiguous.

Two representative examples of challenges faced in linear absorption spectroscopy include:

(a) Two peaks appear in an absorption spectrum. Do these resonances arise from two different
non-interacting species present in a mixture, or are these transitions between different quan-
tum states of the same molecule? Linear spectroscopy can be compared to simulations to
try to resolve these kinds of questions, but cannot directly interrogate spectral correlations
between features.

(b) An absorption spectrum features an extremely broad lineshape. Is this a homogeneous line-
shape broadened by a fast relaxation process? Or is it an inhomogeneous lineshape arising
from a distribution of static absorption frequencies in our ensemble? Linear spectroscopy
cannot distinguish between these broadening mechanisms.

In nonlinear spectroscopy, multiple light-matter interactions can be used to correlate different
spectral features, see how pumping of one spectral feature influences the appearance of other
features, and introduce time-delays between pulses to pick out relevant time scales of different
processes. The two examples above can be disentangled by double-resonance experiments that
reveal how pumping at frequency ω1 impacts absorption at ω2.

We can also describe nonlinear processes like Raman spectroscopy, second harmonic generation,
two-photon absorption, transient absorption, and a plethora of higher-order multidimensional pro-
cesses. While we barely scratch the surface of these topics here, you should now have the tools
to delve into them yourself. I highly recommend Zanni and Hamm’s “Concepts and Methods of
2D Infrared Spectroscopy” and Peter Hamm’s “Principles of Nonlinear Optical Spectroscopy: A
Practical Approach” for those of you who are doing research in this field and want to know more.

3 Perturbative expansion of the density matrix

Examining what happens when we interact an ensemble of molecules with several ultrafast laser
pulses comes down to (surprise, surprise!) solving the Schrödinger equation for a time-varying
Hamiltonian.

We will take the usual setup:

Ĥ(t) = Ĥ0 + Ĥ ′(t) (6)

Ĥ0 |ψn⟩ = En |ψn⟩ (7)

Except now instead of solving for |ψ(t)⟩ using time-dependent perturbation, we will instead look
for ρ(t). Again, the density matrix will be more useful to understand the dynamics of the system
than the wavefunction, because (a) it can account for dephasing and statistical mixtures of states,
(b) we can still simply extract its diagonal terms ρnn to examine the likelihood of the system being
in state n at time t, and (c) we can compute the expectation value of any operator A at time t by
taking Tr[Aρ(t)].

So, we will try to solve the Liouville-von Neumann equation, including a phenomenological
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description of dephasing. For each element of ρ(t) we have:

d

dt

[
ρnm(t)

]
= − i

ℏ

[
Ĥ0, ρ(t)

]
nm

− i

ℏ

[
Ĥ ′(t), ρ(t)

]
nm

− ρnm/T2 (8)

= −
[
iωmn +

1

T2

]
ρnm(t)− i

ℏ

[
Ĥ ′(t), ρ(t)

]
nm

(9)

The first term in Eqn. 8 is the trivial bit, which can be handled by expanding ρ in the basis of
eigenstates of Ĥ0: [

Ĥ0, |n⟩ ⟨m|
]
nm

= Ĥ0 |n⟩ ⟨m| − |n⟩ ⟨m| Ĥ0 (10)

= (En − Em) |n⟩ ⟨m| = ℏωnm |n⟩ ⟨m| (11)

→ − i

ℏ

[
Ĥ0, ρ(t)

]
nm

= −iωnmρnm(t) (12)

We can begin to solve Eqn. 9 by defining our zeroth order density matrix as the static system

before interaction with the laser, so there are no off-diagonal coherences: ρ
(0)
nm = 0 for n ̸= m. We

can plug in this zeroth order solution and solve for the first order solution:

d

dt

[
ρ(1)nm(t)

]
= −

[
iωmn +

1

T2

]
ρ(1)nm(t)− i

ℏ

[
Ĥ ′(t), ρ(0)

]
nm

(13)

Integrating this expression produces:

ρ(1)nm(t) =
i

ℏ

∫ ∞

0
dτ

[
Ĥ ′(t− t1), ρ

(0)
]
nm

e−(iωmn+1/T2)t1 (14)

Note: we’ve skipped some math here which involves using ρ
(1)
nm(t) = S

(1)
nm(t) e−(iωmn+1/T2)t1 as a

change of variables.
To proceed here, one would do the following:

� Expand the commutator in Eqn. 14 by substituting H ′(t) = µ̂E(t) cos(ωt) where E(t) may
encode the pulsed temporal structure of the driving field.

� Assume this driving field is resonant with ω = ωmn.

� Take the rotating wave approximation.

� Inspect the matrix elements ρ
(1)
nn(t) to determine how populations evolve in time, to first order.

� Evaluate the macroscopic polarization of the system, to first order: P (1)(t) = ⟨µ̂ρ(1)(t)⟩

� Iteratively plug ρ(1)(t) back into the integral in Eqn. 14 to find ρ(2)(t), etc.

Understandably, this becomes somewhat tedious. Things get a bit clearer if we use the interac-
tion picture, to separate out the field-induced dynamics from the intrinsic evolution of the reference
Hamiltonian.
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4 Pertubative expansion of ρ in the interaction picture

Recall that we defined (way back in Module 2) the wavefunction in the interaction picture:

|ψ(t)⟩ ≡ e−iĤ0(t−t0)/ℏ |ψI(t)⟩ = Û0(t, t0) |ψI(t)⟩ (15)

where t0 is some reference time point. With this definition, if Ĥ ′(t) is zero, then |ψI(t)⟩ = |ψ(t0)⟩
will just be a constant in time.

By introducing this definition for the interaction picture wavefunction into the Schrödinger
equation, one can prove that:

d

dt
|ψ(t)⟩ = − i

ℏ
Ĥ |ψ(t)⟩ → d

dt
|ψI(t)⟩ = − i

ℏ
Ĥ ′

I(t) |ψI(t)⟩ (16)

where we have defined a new perturbing Hamiltonian in the interaction picture:

Ĥ ′
I(t) ≡ e+iĤ0(t−t0)/ℏ Ĥ ′(t) e−iĤ0(t−t0)/ℏ (17)

= Û †
0(t, t0) Ĥ

′(t) Û0(t, t0) (18)

We can now proceed to define the density matrix in the interaction picture, ρI(t), and inspect
what happens to the Liouville-von Neumann equation:

ρ(t) = |ψ(t)⟩ ⟨ψ(t)| = Û0(t, t0) |ψI(t)⟩ ⟨ψI(t)| Û †
0(t, t0) (19)

≡ Û0(t, t0) ρI(t) Û
†
0(t, t0) (20)

Note again that this expression is linear in ρ, and therefore holds for both pure and mixed states.
Following in the footsteps of Eqn. 16, it will turn out that we can simply write the Liouville-von

Neumann equation in terms of the interaction picture density matrix as:

d

dt
ρ(t) = − i

ℏ
[
Ĥ(t), ρ(t)

]
→ d

dt
ρI(t) = − i

ℏ
[
Ĥ ′

I(t), ρI(t)
]

(21)

One can integrate the above to find:

ρI(t) = ρI(t0)−
(
i

ℏ

)∫ t

t0

dτ
[
Ĥ ′

I(τ), ρI(τ)
]

(22)

It’s therefore much simpler to iteratively solve for the density matrix in the interaction picture:

ρI(t) = ρI(t0)−
(
i

ℏ

)∫ t

t0

dτ1

[
Ĥ ′

I(τ1), ρI(t0)
]

(23)

+

(
− i

ℏ

)2 ∫ t

t0

dτ2

∫ τ2

t0

dτ1

[
Ĥ ′

I(τ2), [Ĥ
′
I(τ1), ρI(t0)

]
(24)

+ · · ·

Or considering the entire expansion:

ρI(t) = ρI(t0) +
∞∑
n=1

(
− i

ℏ

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 · · ·
∫ τ2

t0

dτ1

[
Ĥ ′

I(τn),
[
Ĥ ′

I(τn−1), · · ·
[
Ĥ ′

I(τ1), ρI(t0)
]]]

(25)
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We can finally return to the Schrödinger picture density matrix using Eqn. 20, though note that
the interaction picture pertubation Ĥ ′

I that still appears:

ρ(t) = ρ(0)(t) +

∞∑
n=1

(
− i

ℏ

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 · · ·
∫ τ2

t0

dτ1 (26)

Û0(t, t0)
[
Ĥ ′

I(τn),
[
Ĥ ′

I(τn−1), · · ·
[
Ĥ ′

I(τ1), ρ(t0)
]]]

Û †
0(t, t0)

≡ ρ(0)(t) +

∞∑
n=1

ρ(n)(t) (27)

Eqn. 27 is complicated to evaluate! Because it contains a nested set of commutators, the integral
will contain a sum of 2n terms with the various Ĥ ′

I(τk) operators acting on ρ(t0) from both its ket
and bra sides.

We can go a little further to make Eqn. 27 easier to work with. Let’s use our explicit expression
for Ĥ ′(t) for light-matter interactions:

Ĥ ′(t) = E(t) µ̂ (28)

→ Ĥ ′
I(t) = Û †

0(t, t0)E(t) µ̂ Û0(t, t0) (29)

= E(t) Û †
0(t, t0) µ̂ Û0(t, t0) (30)

≡ E(t) µ̂I(t) (31)

where we define µ̂I(t) ≡ Û †
0(t, t0) µ̂ Û0(t, t0) as the interaction picture dipole operator.

Let’s now consider our iterative definition of ρ(t) as an expansion of terms:

ρ(t) = ρ(t0) +
∞∑
n=1

ρ(n)(t) (32)

ρ(n)(t) ≡
(
− i

ℏ

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 · · ·
∫ τ2

t0

dτ1E(τn)E(τn−1) · · ·E(τ1) (33)

Û0(t, t0) [µ̂I(τn), [µ̂I(τn−1), · · · [µ̂I(τ1), ρ(t0)]]] Û †
0(t, t0)

There are two conventions to note here:

� By convention t0 is taken in the limit t0 → −∞, so you often see Eqn. ?? involving ρ(−∞)
rather than ρ(t0). ρ(−∞) is considered to be the density matrix at equilibrium well before
any perturbation occurs, which is static under the reference Hamiltonian Ĥ0.

� The dipole operator µ̂ is time independent, while in the interaction picture we have a time-
dependent µ̂I(t) that evolves under Ĥ0. You will often see the I subscript dropped, and the
interaction picture implied with the explicit time dependence µ̂(t).

4.1 Connecting ρ to macroscopic polarization

When matter interacts with light, it becomes polarized : its dipole moment changes in response to
the applied electromagnetic field. In linear optics, the polarization of the material depends linearly
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on the electric field E:

P = ϵ0 · χ(1) · E (34)

where χ(1) is the linear susceptibility of the material. For strong enough electric fields, this linear
approximation is no longer true, and the polarization is instead expanded in powers of the electric
field:

P = ϵ0

[
χ(1) · E + χ(2) · E · E + χ(3) · E · E · E + . . .

]
(35)

= P (1) + P (2) + P (3) . . . (36)

where χ(n) is the nonlinear susceptibility of order n.

Aside: In media with inversion symmetry (such as isotropic media like a bulk liquid), we
expect that if the sign of the electric field is reversed the sign of the polarization must change
as well. However, even powers of E will always have positive magnitude. As a result, the
even-order susceptibilities χ(2n) must therefore vanish in isotropic media, and the 3rd order
nonlinearity gives rise to the lowest-order nonlinear processes. (Note that this is not true in
situations lacking inversion symmetry, such as at interfaces, where second-order processes like
second harmonic generation and sum frequency generation can indeed occur.

We’ve already motivated that the macroscopic polarization of the sample is given by the expec-
tation value of the dipole operator µ̂:

P (t) = ⟨µ̂(t)⟩ = Tr [µ̂ρ(t)] (37)

We can note now by inspecting Eqns. 33 and 36 that since both the macroscopic polarization
and the density matrix are expanded in powers of E, we can equate:

P (n)(t) = Tr
[
µ̂ · ρ(n)(t)

]
≡

〈
µ̂ · ρ(n)(t)

〉
(38)

where we now use ⟨. . . ⟩ as a compact notation for the trace.
So let’s now write down an expression for the nth-order component of the macroscopic polar-

ization in terms of our perturbative expansion of the density matrix. Dropping the I subscripts for
the transition dipoles:

P (n)(t) =

〈
µ̂ ·

(
− i

ℏ

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 · · ·
∫ τ2

t0

dτ1E(τn)E(τn−1) · · ·E(τ1) (39)

Û0(t, t0) [µ̂(τn), [µ̂(τn−1), · · · [µ̂(τ1), ρ(t0)]]] Û †
0(t, t0)

〉
=

(
− i

ℏ

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 · · ·
∫ τ2

t0

dτ1E(τn)E(τn−1) · · ·E(τ1) (40)〈
µ̂ · Û0(t, t0) [µ̂(τn), [µ̂(τn−1), · · · [µ̂(τ1), ρ(t0)]]] Û †

0(t, t0)

〉
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The trace is invariant to cyclic permutation of multipled terms within it (e.g. Tr[ABCD] =
Tr[BCDA] = . . . ). So therefore:

P (n)(t) =

(
− i

ℏ

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 · · ·
∫ τ2

t0

dτ1E(τn)E(τn−1) · · ·E(τ1) (41)〈
Û †
0(t, t0) µ̂ · Û0(t, t0) [µ̂(τn), [µ̂(τn−1), · · · [µ̂(τ1), ρ(t0)]]]

〉
=

(
− i

ℏ

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 · · ·
∫ τ2

t0

dτ1E(τn)E(τn−1) · · ·E(τ1) (42)〈
µ̂(t) [µ̂(τn), [µ̂(τn−1), · · · [µ̂(τ1), ρ(t0)]]]

〉
The nth-order polarization is thus a convolution of n electric fields with the nth-order nonlinear

response function S(n)(t):

S(n)(t) ≡
(
− i

ℏ

)n〈
µ(t) [µ(τn), [µ(τn−1), · · · [µ(τ1), ρ(t0)]]]

〉
(43)

Or, without loss of generation, taking

t0 → −∞ (44)

τ1 = 0 (45)

t1 = τ2 − τ1 (46)

t2 = τ3 − τ2 . . . (47)

We can write

S(n)(tn, . . . , t1) =

(
− i

ℏ

)n〈
µ(tn + · · ·+ t1)

[
µ(tn−1 + · · ·+ t1), · · ·

[
µ(0), ρ(−∞)

]
· · ·

]〉
(48)

This nth response function is defined for n interactions of the molecular dipole with the field at
positive times

∑
k tk that defined with respect to an arbitrary time 0.

The interactions of the dipole with the field at various times act on the initial density matrix
ρ(−∞) to generate a non-equilibrium density matrix ρ(n)(t) whose off-diagonal elements generate
a macroscopic polarization of the sample.

Only the first n interactions with the dipole operator are part of the commutator. The final
term µ(tn + · · · + t1) lies outside the commutator, and represents our final measurement of the
macroscopic polarization of the sample as a function of time after all interactions with the field
have already transpired.
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5 Representing spectroscopy

When a laser pulse interacts with an ensemble of molecules, the transition dipole operator µ̂ perturbs
the density operator ρ, and it does so from either the bra (left) or the ket (right) sides of ρ. Each
set of commutators in our expressions above give us 2n terms, within which there are pairs of terms
that are just complex conjugates.

5.1 The first order response & linear spectroscopy

As a simple example, let’s consider the set of terms that arise from the nested set of commutators
for both the linear and the third-order responses. We skip the second-order response, as we said
earlier that it is assumed to vanish in isotropic media.

The linear response function evaluated at time t1 is

S(1)(t1) = − i

ℏ
⟨ µ̂(t1)[µ(0), ρ(−∞)] ⟩ (49)

= − i

ℏ

[
⟨µ̂(t1)µ̂(0)ρ(−∞)⟩ − ⟨µ̂(t1)ρ(−∞)µ̂(0)⟩

]
(50)

= − i

ℏ

[
⟨µ̂(t1)µ̂(0)ρ(−∞)⟩ − ⟨ρ(−∞)µ̂(0)µ̂(t1)⟩

]
(51)

= − i

ℏ

[
⟨µ̂(t1)µ̂(0)ρ(−∞)⟩ − ⟨µ̂(t1)µ̂(0)ρ(−∞)⟩∗

]
(52)

= − i

ℏ

[
⟨µ̂(t1)µ̂(0)ρ(−∞)⟩ − C.C.

]
(53)

where we have made use of the invariance of the trace to cyclic permutation and the fact that:〈
[µ̂(t1)µ̂(0)ρ(−∞)]†

〉
=
〈
ρ†(−∞)µ̂†(0)µ̂†(t1)

〉
(54)

= ⟨ρ(−∞)µ̂(0)µ̂(t1)⟩ (55)

where the last step is possible because these operators are all Hermitian, and are by definition
self-adjoint.

What is actually happening here? At time t = 0, we apply a µ̂(0) to ρ(−∞), which know creates
off-diagonal matrix elements like ρ12. The probability that this happens is proportional to µ12. We
know from solving the optical Bloch equations that the off-diagonal density matrix element evolves
in time as:

ρ12(t) ∝ µ12 e
−i(ω12)t e−t/T2 (56)

where T2 is the dephasing time.
At time t1, the off-diagonal matrix element, representing a macroscopic polarization of the

sample, emits a light field, which is again proportional to µ12, so

S(1)(t1) ∝ µ212 e
−i(ω12)t1 e−t1/T2 (57)

Let’s now assume we have a very short pulsed field with a carrier frequency that is resonant
with our transition of interest, so ω = ω12:

E(t) = E0(t) · 2 cos(ωt) = E0(t)
[
e−iωt + eiωt

]
= E0 δ(t)

[
e−iωt + eiωt

]
(58)
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For the first order-polarization of the sample, we therefore calculate:

P (1)(t) = − i

ℏ

∫ ∞

0
dt1E(t− t1)S

(1)(t1) (59)

= − i

ℏ

∫ ∞

0
dt1E0δ(t− t1)

[
e−iω(t−t1) + eiω(t−t1)

]
· µ212 e−iωt1e−t1/T2 (60)

= − i

ℏ
E0 µ

2
12

∫ ∞

0
dt1 δ(t− t1)

[
e−iωt +�������:RWA

eiωt · e−2iωt1

]
e−t1/T2 (61)

= − i

ℏ
E0 µ

2
12 e

−iωt

∫ ∞

0
dt1 δ(t− t1)e

−t1/T2 (62)

= − i

ℏ
E0 µ

2
12 e

−iωte−t/T2 (63)

This oscillating polarization will emit a field with a 90-degree phase lag, so E(1)(t) ∝ −iP (1)(t).
This is the free induction decay, which interferes with the incident field E0(t). On a square law
detector, you measure the intensity rather than the field amplitude:

|E0(t) + E(1)(t)|2 = |E0(t)|2 + |E1(t)|2 + 2ℜ[E0(t)E
(1)(t)] (64)

In a linear absorption measurement, the phase shift of the radiated field with respect to the incident
field causes destructive interference, which leads to a lower intensity of light on the detector at the
resonance frequency ω.

If you were to resolve the spectrum of this field with a spectrometer, which performs a Fourier
transform of the fields from time into frequency space, and calculate an absorption spectrum, you
would see a negative-going Lorentzian line at the 0 → 1 resonance frequency representing the
absorption of light by the sample.

5.2 Third order response & nonlinear spectroscopy

The same exercise as above for the third-order response yields the following terms for S(3) (plus
their complex conjugates):

⟨µ(t3 + t2 + t1)µ̂(0)ρ(−∞)µ̂(t1)µ̂(t2 + t1)⟩ − C.C. (65)

⟨µ(t3 + t2 + t1)µ̂(t1)ρ(−∞)µ̂(0)µ̂(t2 + t1)⟩ − C.C. (66)

⟨µ(t3 + t2 + t1)µ̂(t2 + t1)ρ(−∞)µ̂(0)µ̂(t1)⟩ − C.C. (67)

⟨µ(t3 + t2 + t1)µ̂(t2 + t1)µ̂(t1)ρ(−∞)µ̂(0)⟩ − C.C. (68)

There is some additional complication here because in addition to the 2n terms of S(n), the
electric field also has many terms, for example:

P (3)(t) =

∫ ∞

0
dt3

∫ ∞

0
dt2

∫ ∞

0
dt1E(t− t3)E(t− t3 − t2)E(t− t3 − t2 − t1)S

(3)(t3, t2, t1) (69)

10



In practice in the laboratory, the field will originate from a series of short laser pulses:

with

E(t) = E1(t)
[
eiωt + e−iωt

]
+ E2(t)

[
eiωt + e−iωt

]
+ E3(t)

[
eiωt + e−iωt

]
(70)

so each factor of E(t) in Eqn. 69 adds 6-fold more terms to the calculation of P (t).
To simplify this situation, we can make use of time ordering of pulses. We assume the width

of the laser pulses in time are short compared to their separation times, but long compared to the
oscillation period of the light ω. So, the first pertubation from µ̂(0) originates from E1(t), and so
forth. We can also again approximate the envelopes as δ functions, so, e.g. E1(t) = E1δ(t)e

±iωt,
again simplifying the integral in Eqn. 69.

In practice, phase matching is also used to distinguish between the various terms in S(n) that
contribute to experimental signal. If we think about the spatial geometry of the fields, the laser
pulses can travel along different wavevectors, e.g. E1(t) = E1(t)

[
e−iω1t+ik1r + e−iω1t−ik1r

]
. The

product of E3(t− t3)E2(t− t3− t2)E1(t− t3− t2− t1) will carry a wavevector of k = ±k1± k2± k3.
By setting up the geometry of the system, these can be distinguished.

5.3 A more concrete example of nonlinear signals

Let’s at long last touch on a simple non-linear experiment. Let’s work through the contribution of
Eqn. 65 above to the signal for a two-level system.

� We’ll initialize our density matrix in the ground state:

ρ(−∞) =

(
1 0
0 0

)
(71)

and assume our light-matter perturbation takes the form

µ̂ =

(
0 µ12
µ12 0

)
(72)

� At time t = 0, the first perturbation acts from the left to generate an off-diagonal matrix
element of ρ proportional to µ12:

µ̂(0) · ρ(−∞) =

(
0 µ12
µ12 0

)
·
(
1 0
0 0

)
=

(
0 0
µ12 0

)
(73)

� We then let the system evolve in the absence of interactions until time t1. Let’s neglect
population relaxation or any other dynamics for now, so at time t1 we have a density matrix
given by: (

0 0
µ12e

−iω12t1 0

)
(74)
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� At time t = 1 we are perturbed again, this time from the right:

µ̂(0) · ρ(−∞)µ̂(t1) =

(
0 0

µ12e
−iω12t1 0

)
·
(

0 µ12
µ12 0

)
=

(
0 0
0 µ212e

−iω12t1

)
(75)

� We now let the system evolve until time t1 + t2, but note that there is no temporal evolution
of the diagonal elements of the density matrix, which represent populations!

� Continuing on with two more interactions with the field at times t1 + t2 and t1 + t3, and
evolution of the off-diagonal elements for time t3 we finally have:

µ(t3 + t2 + t1)µ̂(0)ρ(−∞)µ̂(t1)µ̂(t2 + t1) =

(
µ412e

−iω12(t1+t3) 0
0 0

)
(76)

� We then take the trace of the above and subtract its own complex conjugate to find:〈
µ(t3 + t2 + t1)µ̂(0)ρ(−∞)µ̂(t1)µ̂(t2 + t1)

〉
− C.C. ∝ µ412 sin(ω12(t3 + t1)) (77)

Note that we’ve neglected dephasing and population decay here, but their effects are easily added
into each step above.

Following this procedure, one can generate contributions to the molecular responses from all the
relevant pathways in Eqns. 65 - 68. One would finally then integrate S(3)(t) against the electric field,
as shown in Eqn. 69 to obtain the macroscopic polarization P (3)(t), from which the radiated field
E(3)(t) can be directly determined. The Fourier transform of E(3)(t) will then give the nonlinear
absorption spectrum, which will change as the timing between the pulses is varied.

The sum of all the terms of S(3)(t) will contribute to this final signal, though again one can
distinguish between these pathways using phase matching.
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